cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238454 Difference between 2^(2*n-1) and the next larger square.

Original entry on oeis.org

2, 1, 4, 16, 17, 68, 89, 356, 697, 1337, 2449, 4001, 4417, 17668, 24329, 4633, 18532, 74128, 296512, 1186048, 1778369, 1181833, 4727332, 18909328, 28184177, 17830441, 71321764, 285287056, 381898097, 9092137, 36368548, 145474192, 581896768, 2327587072, 9310348288
Offset: 1

Views

Author

Alex Ratushnyak, Feb 26 2014

Keywords

Examples

			a(1) = 4 - 2^1 = 2.
a(2) = 9 - 2^3 = 1.
a(3) = 36 - 2^5 = 4.
		

Crossrefs

Programs

  • Mathematica
    (Floor[Sqrt[#]]+1)^2-#&/@Table[2^(2n-1),{n,40}] (* Harvey P. Dale, Jul 05 2019 *)
  • PARI
    a(n) = my(r,s=sqrtint(1<<(2*n-1),&r)); 2*s+1-r; \\ Kevin Ryde, Oct 12 2022
  • Python
    def isqrt(a):
        sr = 1 << (int.bit_length(int(a)) >> 1)
        while a < sr*sr:  sr>>=1
        b = sr>>1
        while b:
            s = sr + b
            if a >= s*s:  sr = s
            b>>=1
        return sr
    def a(n):
        nn = 2**(2*n+1)
        s = isqrt(nn)
        return (s+1)**2-nn
    for n in range(77):  print(str(a(n)), end=',')
    
  • Sage
    def a(n):
        return ceil(2^n/sqrt(2))^2 - 2^(2*n-1) # Ralf Stephan, Mar 08 2014
    

Formula

From Antti Karttunen, Feb 27 2014: (Start)
a(n) = ceiling(sqrt(2^(2*n-1)))^2 - 2^(2*n-1).
For all n, A000035(abs(A201125(n) - A238454(n))) = 1, because if the nearest square at the other side of 2^(2*n-1) is even, then the nearest square at the other side is odd.
(End)