cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A238525 n modulo sopfr(n), where sopfr(n) is the sum of the prime factors of n, with multiplicity.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 2, 3, 3, 0, 5, 0, 5, 7, 0, 0, 2, 0, 2, 1, 9, 0, 6, 5, 11, 0, 6, 0, 0, 0, 2, 5, 15, 11, 6, 0, 17, 7, 7, 0, 6, 0, 14, 1, 21, 0, 4, 7, 2, 11, 1, 0, 10, 7, 4, 13, 27, 0, 0, 0, 29, 11, 4, 11, 2, 0, 5, 17, 0, 0, 0, 0, 35, 10, 7, 5, 6, 0, 2, 9, 39
Offset: 2

Views

Author

J. Stauduhar, Feb 28 2014

Keywords

Comments

a(A036844(n)) = 0. - Reinhard Zumkeller, Jul 21 2014

Examples

			a(6) = 1, because 6 mod sopfr(6) = 6 mod 5 = 1.
		

Crossrefs

Programs

  • Haskell
    a238525 n = mod n $ a001414 n  -- Reinhard Zumkeller, Jul 21 2014
  • Mathematica
    Table[Mod[n, Apply[Dot, Transpose[FactorInteger[n]]]], {n, 105}] (* Wouter Meeussen, Mar 01 2014 *)
    mms[n_]:=Mod[n,Total[Flatten[Table[#[[1]],#[[2]]]&/@FactorInteger[ n]]]]; Array[mms,90,2] (* Harvey P. Dale, May 25 2016 *)

Formula

a(n) = n mod A001414(n).

A238527 Prime values of A238525.

Original entry on oeis.org

2, 3, 3, 5, 5, 7, 2, 2, 5, 11, 2, 5, 11, 17, 7, 7, 7, 2, 11, 7, 13, 29, 11, 11, 2, 5, 17, 7, 5, 2, 19, 41, 23, 3, 11, 11, 23, 5, 2, 2, 2, 31, 7, 3, 17, 3, 23, 11, 59, 19, 5, 2, 37, 3, 41, 23, 71, 11, 2, 11, 47, 11, 29, 13, 13, 2, 31, 5, 5, 53, 17, 19, 13, 61, 23, 101, 19, 29, 41, 23, 107, 67, 11, 3, 3, 47, 73, 2, 3, 17
Offset: 1

Views

Author

J. Stauduhar, Feb 28 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Table[Mod[n, Plus @@ Times @@@ FactorInteger[n]], {n, 2, 300}], PrimeQ] (* Amiram Eldar, May 17 2021 *)

A238528 Record prime values of A238525.

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 179, 191, 197, 227, 239, 269, 281, 311, 347, 419, 431, 461, 521, 569, 599, 617, 641, 659, 809, 821, 827, 857, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1229, 1277, 1289, 1301, 1319, 1427, 1451
Offset: 1

Views

Author

J. Stauduhar, Feb 28 2014

Keywords

Comments

The prime values in A238526.

Crossrefs

Programs

  • Mathematica
    Union @ FoldList[Max, Select[Table[Mod[n, Plus @@ Times @@@ FactorInteger[n]], {n, 2, 3000}], PrimeQ]] (* Amiram Eldar, May 17 2021 *)

A114338 Number of divisors of n!! (double factorial = A006882(n)).

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 10, 8, 16, 16, 36, 32, 66, 64, 144, 120, 192, 240, 340, 480, 570, 864, 1200, 1728, 1656, 2880, 3456, 4320, 5616, 8640, 9072, 17280, 10752, 28800, 22176, 46080, 30240, 92160, 62208, 152064, 84240, 304128, 128000, 608256, 201600
Offset: 0

Views

Author

Giovanni Resta, Feb 07 2006

Keywords

Comments

It appears that a(n+2) = 2*a(n) if n is in A238526. - Michel Lagneau, Dec 07 2015

Examples

			a(5) = 4 since 5!! = 15 and the divisors are 1, 3, 5 and 15.
a(6) = 10 because 6!! = A006882(6) = 48 has precisely ten distinct divisors: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48. - _Michel Lagneau_, Dec 07 2016
		

Crossrefs

Programs

  • Maple
    f := proc(n)
    numtheory[tau](doublefactorial(n)) ;
    end proc: # R. J. Mathar, Dec 14 2015
  • Mathematica
    DivisorSigma[0,Range[50]!! ]
  • PARI
    df(n) = if( n<0, 0, my(E); E = exp(x^2 / 2 + x * O(x^n)); n! * polcoeff( 1 + E * x * (1 + intformal(1 / E)), n)); \\ A006882
    vector(100, n, n--; numdiv(df(n))) \\ Altug Alkan, Dec 07 2015

Formula

a(n) = sigma_0(n!!) = tau(n!!) = A000005(A006882(n)).

A238621 Position of first occurrence of n in A238525.

Original entry on oeis.org

1, 6, 8, 9, 48, 12, 24, 15, 120, 22, 54, 26, 90, 57, 44, 34, 156, 38, 114, 85, 228, 46, 232, 87, 348, 93, 138, 58, 318, 62, 372, 111, 333, 265, 354, 74, 366, 129, 296, 82, 369, 86, 402, 667, 387, 94, 328, 159, 438, 244, 530, 106, 423, 177, 474, 183, 1416, 118, 498, 122, 742, 201, 590, 415, 534, 134, 610, 219
Offset: 0

Views

Author

Robert G. Wilson v, Mar 01 2014

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Mod[n, Dot @@ Transpose@ FactorInteger@ n]; t = Table[0, {1000}]; k = 1; While[k < 100001, a = f[k]; If[a < 1001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++]; t
Showing 1-5 of 5 results.