A238541 A fourth-order linear divisibility sequence: a(n) := A(n)/A(1) where A(n) := ( (3^n + 2^n)*(3^(3*n) - 2^(3*n)) ).
1, 91, 7063, 538447, 41441455, 3231753343, 254851186927, 20265345051679, 1621012954550479, 130194036583465855, 10485834936321976111, 846117830539227426271, 68360837263665964839823, 5527792975131721247371327, 447241733557623755497669615
Offset: 1
Links
- Peter Bala, A family of linear divisibility sequences of order four
- Wikipedia, Divisibility sequence
- Index entries for linear recurrences with constant coefficients, signature (175,-10158,226800,-1679616).
Programs
-
Maple
#A238541 seq(1/95*(3^n + 2^n)*(3^(3*n) - 2^(2*n)), n = 1..20);
-
Mathematica
LinearRecurrence[{175,-10158,226800,-1679616},{1,91,7063,538447},20] (* Harvey P. Dale, Apr 12 2018 *)
Formula
a(n) = (1/95)*(3^n + 2^n)*(3^(3*n) - 2^(3*n)).
a(n) = (1/95)*(9^n - 4^n)*(27^n - 8^n)/(3^n - 2^n).
O.g.f.: x*(1 - 84*x + 1296*x^2)/((1 - 16*x)*(1 - 24*x)*(1 - 54*x)*(1 - 81*x)).
Recurrence equation: a(n) = 175*a(n-1) - 10158*a(n-2) + 226800*a(n-4) - 1679616*a(n-4).
Comments