A238554 Smallest k such that k + 2^n and k*2^n + 1 are both prime.
1, 1, 1, 5, 1, 11, 3, 9, 1, 35, 15, 39, 3, 39, 63, 35, 1, 149, 3, 419, 7, 221, 25, 155, 73, 735, 69, 29, 193, 261, 3, 135, 81, 149, 85, 125, 117, 809, 303, 509, 27, 699, 325, 29, 27, 285, 639, 65, 61, 1911, 639, 165, 295, 1295, 163, 905, 175, 75, 1593, 249
Offset: 0
Keywords
Examples
5 is in this sequence because 5 + 2^3 = 13 and 5*2^3 + 1 = 41 are both prime.
Links
- Giovanni Resta, Table of n, a(n) for n = 0..500
Crossrefs
Cf. A019434 (Fermat primes).
Programs
-
Mathematica
Table[Module[{k=1,c=2^n},While[!AllTrue[{c+k,k c+1},PrimeQ],k++];k],{n,0,60}] (* Harvey P. Dale, Oct 20 2023 *)
-
PARI
a(n) = {k = 1;while (!(isprime(k + 2^n) && isprime(k*2^n + 1)), k++); k;} \\ Michel Marcus, Mar 01 2014
Extensions
a(15) corrected and a(24) from Michel Marcus, Mar 01 2014
Missing term and a(25)-a(59) from Giovanni Resta, Mar 01 2014
Comments