A238602 A sixth-order linear divisibility sequence related to the Pell numbers: a(n) := (1/60)*Pell(3*n)*Pell(4*n)/Pell(n).
1, 238, 45507, 9063516, 1792708805, 355009117386, 70287911575687, 13916722851826872, 2755438412296182921, 545562971271797876390, 108018710075587599558731, 21387159127038457710621972, 4234549485214861760195346253, 838419411023095574089504928386
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..435
- P. Bala, Divisibility sequences from strong divisibility sequences
- Wikipedia, Divisibility sequence
- Wikipedia, Lucas Sequence
- Wikipedia, Pell number
- Index entries for linear recurrences with constant coefficients, signature (170,5745,-40052,5745,170,-1).
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1 +68*x-698*x^2+68*x^3+x^4)/((1-6*x+x^2)*(1+34*x+x^2)*(1-198*x+x^2)))); // G. C. Greubel, Aug 07 2018 -
Mathematica
Table[(1/60)*(Fibonacci[2*n, 2] + (-1)^n*Fibonacci[4*n, 2] + Fibonacci[6*n, 2]), {n, 1, 50}] (* G. C. Greubel, Aug 07 2018 *)
-
PARI
x='x+O('x^30); Vec(x*(1+68*x-698*x^2+68*x^3+x^4)/((1-6*x+x^2)*(1 + 34*x+x^2)*(1-198*x+x^2))) \\ G. C. Greubel, Aug 07 2018
Formula
a(n) = (1/60)*( Pell(2*n) + (-1)^n*Pell(4*n) + Pell(6*n) ).
The sequence can be extended to negative indices using a(-n) = -a(n).
O.g.f. x*(1 + 68*x - 698*x^2 + 68*x^3 + x^4)/( (1 - 6*x + x^2)*(1 + 34*x + x^2)*(1 - 198*x + x^2) ).
Recurrence equation: a(n) = 170*a(n-1) + 5745*a(n-2) - 40052*a(n-3) + 5745*a(n-4) + 170*a(n-5) - a(n-6).
Comments