cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238702 Sum of the smallest parts of the partitions of 4n into 4 parts.

Original entry on oeis.org

1, 6, 21, 55, 119, 227, 396, 645, 996, 1474, 2106, 2922, 3955, 5240, 6815, 8721, 11001, 13701, 16870, 20559, 24822, 29716, 35300, 41636, 48789, 56826, 65817, 75835, 86955, 99255, 112816, 127721, 144056, 161910, 181374, 202542, 225511, 250380, 277251, 306229
Offset: 1

Views

Author

Wesley Ivan Hurt and Antonio Osorio, Mar 03 2014

Keywords

Comments

Partial sums of A238340. - Wesley Ivan Hurt, May 27 2014

Examples

			Add the numbers in the last column for a(n):
                                             13 + 1 + 1 + 1
                                             12 + 2 + 1 + 1
                                             11 + 3 + 1 + 1
                                             10 + 4 + 1 + 1
                                              9 + 5 + 1 + 1
                                              8 + 6 + 1 + 1
                                              7 + 7 + 1 + 1
                                             11 + 2 + 2 + 1
                                             10 + 3 + 2 + 1
                                              9 + 4 + 2 + 1
                                              8 + 5 + 2 + 1
                                              7 + 6 + 2 + 1
                                              9 + 3 + 3 + 1
                                              8 + 4 + 3 + 1
                                              7 + 5 + 3 + 1
                                              6 + 6 + 3 + 1
                                              7 + 4 + 4 + 1
                                              6 + 5 + 4 + 1
                                              5 + 5 + 5 + 1
                              9 + 1 + 1 + 1  10 + 2 + 2 + 2
                              8 + 2 + 1 + 1   9 + 3 + 2 + 2
                              7 + 3 + 1 + 1   8 + 4 + 2 + 2
                              6 + 4 + 1 + 1   7 + 5 + 2 + 2
                              5 + 5 + 1 + 1   6 + 6 + 2 + 2
                              7 + 2 + 2 + 1   8 + 3 + 3 + 2
                              6 + 3 + 2 + 1   7 + 4 + 3 + 2
                              5 + 4 + 2 + 1   6 + 5 + 3 + 2
                              5 + 3 + 3 + 1   6 + 4 + 4 + 2
                              4 + 4 + 3 + 1   5 + 5 + 4 + 2
               5 + 1 + 1 + 1  6 + 2 + 2 + 2   7 + 3 + 3 + 3
               4 + 2 + 1 + 1  5 + 3 + 2 + 2   6 + 4 + 3 + 3
               3 + 3 + 1 + 1  4 + 4 + 2 + 2   5 + 5 + 3 + 3
               3 + 2 + 2 + 1  4 + 3 + 3 + 2   5 + 4 + 4 + 3
1 + 1 + 1 + 1  2 + 2 + 2 + 2  3 + 3 + 3 + 3   4 + 4 + 4 + 4
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     1               6              21              55        ..   a(n)
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x + 1)*(2*x^2 + x + 1)/((1 - x)^5*(x^2 + x + 1)), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jun 27 2014 *)
    LinearRecurrence[{4, -6, 5, -5, 6, -4, 1}, {1, 6, 21, 55, 119, 227, 396}, 50] (* Vincenzo Librandi, Aug 29 2015 *)
  • PARI
    Vec(-x*(x+1)*(2*x^2+x+1)/((x-1)^5*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Mar 23 2014

Formula

G.f.: -x*(x+1)*(2*x^2+x+1) / ((x-1)^5*(x^2+x+1)). - Colin Barker, Mar 10 2014
a(n) = (1/9)*n^4 + (1/3)*n^3 + (5/18)*n^2 + (1/6)*n + O(1). - Ralf Stephan, May 29 2014
a(n) = Sum_{i=1..n} A238340(i). - Wesley Ivan Hurt, May 29 2014
a(n) = (1/4) * Sum_{i=1..n} A238328(i)/i. - Wesley Ivan Hurt, May 29 2014
Recurrence: Let b(1) = 4, with b(n) = (n/(n-1))*b(n-1) + 4n*Sum_{i=0..2n} (floor((4n-2-i)/2)-i) * (floor((sign((floor((4n-2-i)/2)-i))+2)/2)). Then a(1) = 1, with a(n) = b(n)/(4n) + a(n-1), for n>1. - Wesley Ivan Hurt, Jun 27 2014
E.g.f.: (exp(x)*(4 + 3*x*(16 + x*(37 + 2*x*(9 + x)))) - 4*exp(-x/2)*cos(sqrt(3)*x/2))/54. - Stefano Spezia, Feb 09 2023
a(n) = 4*a(n-1) - 6*a(n-2) + 5*a(n-3) - 5*a(n-4) + 6*a(n-5) - 4*a(n-6) + a(n-7). - Wesley Ivan Hurt, Jun 19 2024