A238727 Number T(n,k) of standard Young tableaux with n cells where k is the largest value in the last row; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 0, 2, 0, 0, 1, 3, 0, 0, 1, 2, 7, 0, 0, 1, 3, 8, 14, 0, 0, 1, 4, 11, 19, 41, 0, 0, 1, 7, 19, 34, 64, 107, 0, 0, 1, 11, 32, 62, 119, 202, 337, 0, 0, 1, 21, 64, 131, 248, 418, 671, 1066, 0, 0, 1, 36, 124, 277, 545, 943, 1518, 2361, 3691
Offset: 0
Examples
The 10 tableaux with n=4 cells sorted by largest value in the last row: :[1 3 4]:[1 4] [1 2 4]:[1] [1 2] [1 3] [1 2 3] [1 2] [1 3] [1 2 3 4]: :[2] :[2] [3] :[2] [3] [2] [4] [3 4] [2 4] : : :[3] :[3] [4] [4] : : : :[4] : : --2-- : -----3----- : ---------------------4--------------------- : The 10 ballot sequences of length 4 sorted by the position of the last occurrence of the maximal value: [1, 2, 1, 1] -> 2 } -- 1 [1, 2, 3, 1] -> 3 \ __ 2 [1, 1, 2, 1] -> 3 / [1, 2, 3, 4] -> 4 \ [1, 1, 2, 3] -> 4 \ [1, 2, 1, 3] -> 4 \ [1, 1, 1, 2] -> 4 } 7 [1, 1, 2, 2] -> 4 / [1, 2, 1, 2] -> 4 / [1, 1, 1, 1] -> 4 / thus row 4 = [0, 0, 1, 2, 7]. Triangle T(n,k) begins: 00: 1; 01: 0, 1; 02: 0, 0, 2; 03: 0, 0, 1, 3; 04: 0, 0, 1, 2, 7; 05: 0, 0, 1, 3, 8, 14; 06: 0, 0, 1, 4, 11, 19, 41; 07: 0, 0, 1, 7, 19, 34, 64, 107; 08: 0, 0, 1, 11, 32, 62, 119, 202, 337; 09: 0, 0, 1, 21, 64, 131, 248, 418, 671, 1066; 10: 0, 0, 1, 36, 124, 277, 545, 943, 1518, 2361, 3691;
Links
- Joerg Arndt and Alois P. Heinz, Rows n = 0..43, flattened
- Wikipedia, Young tableau
Programs
-
Maple
h:= proc(l) option remember; local n, s; n:= nops(l); s:= add(i, i=l); `if`(n=0, 1, add(`if`(i
l[i+1], h(subsop(i=l[i]-1, l)), `if`(i=n, (p->add(coeff(p,x,j)*x^`if`(j 1, l[i]-1, [][]), l))), 0)), i=1..n)) end: g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n]), add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i)): T:= n-> (p->seq(coeff(p, x, i), i=0..n))(g(n$2, [])): seq(T(n), n=0..12); -
Mathematica
h[l_] := h[l] = With[{n = Length[l], s = Total[l]}, If[n == 0, 1, Sum[If[i < n && l[[i]] > l[[i + 1]], h[ReplacePart[l, i -> l[[i]] - 1]], If[i == n, Function[p, Sum[Coefficient[p, x, j] x^If[j < s, s, j], {j, 0, Exponent[p, x]}]][h[ReplacePart[l, i -> If[l[[i]] > 1, l[[i]] - 1, Nothing]]]], 0]], {i, n}]]]; g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Table[1, {n}]]], Sum[g[n - i*j, i - 1, Join[l, Table[i, {j}]]], {j, 0, n/i}]]; T[n_] := CoefficientList[g[n, n, {}], x]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Aug 27 2021, after Maple code *)
Comments