A238736 Balancing Wieferich primes: primes p that divide their Pell quotients, where the Pell quotient of p is A000129(p - (2/p))/p and (2/p) is a Jacobi symbol.
13, 31, 1546463
Offset: 1
Examples
PellQuotient(13) = 6214 = 13*478; PellQuotient(31) = 3470274850 = 31*111944350.
Links
- Zakariae Bouazzaoui, On Periods of Fibonacci Sequences and Real Quadratic p-rational Fields, Fibonacci Quart. 58 (2020), no. 5, 103-110. See p. 7.
- Karl Dilcher and Ladislav Skula, A new criterion for the first case of Fermat's Last Theorem, Mathematics of Computation, 64 (1995), 363-392.
- Utkal Keshari Dutta, Bijan Kumar Patel and Prasanta Kumar Ray, A brief remark on balancing-Wieferich primes, Mathematica, Vol. 60 (83), No. 1 (2018), 48-53 [Subscription required].
- Utkal Keshari Dutta, Bijan Kumar Patel and Prasanta Kumar Ray, Balancing non-Wieferich primes in arithmetic progressions, Proceedings - Mathematical Sciences, Vol. 129, No. 2 (2019), Article 21, DOI:10.1007/s12044-018-0459-3.
- Andreas-Stephan Elsenhans and Jörg Jahnel, The Fibonacci sequence modulo p^2 -- An investigation by computer for p < 10^14, arXiv 1006.0824 [math.NT], 2010.
- Georges Gras, On the structure of the Galois group of the Abelian closure of a number field, arXiv 1212.3588 [math.NT], 2013.
- Hao Pan, Lehmer's type congruences for lacunary harmonic sums, arXiv 0905.0941 [math.NT], 2009.
- G. K. Panda and S. S. Rout, Periodicity of Balancing Numbers, Acta Mathematica Hungarica 143 (2014), 274-286. Also on ResearchGate.
- Sudhansu Sekhar Rout, Balancing non-Wieferich primes in arithmetic progression and abc conjecture, Proc. Japan Acad. Ser. A Math. Sci., Volume 92, Number 9 (2016), 112-116.
- Zhi-Hong Sun, Combinatorial sum ... and its applications in Number Theory, III (English version), originally published in Chinese in Journal of Nanjing University Mathematical Biquarterly, 12 (1995), 90-102.
- Zhi-Hong Sun, Five congruences for primes, Fibonacci Quarterly, 40 (2002), 345-351.
- H. C. Williams, The influence of computers in the development of number theory, Computers & Mathematics with Applications, 8 (1982), 75-93.
- H. C. Williams, Some formulas concerning the fundamental unit of a real quadratic field, Discrete Mathematics, 92 (1991), 431--440.
Programs
-
Mathematica
Select[Prime[Range[1000]], Mod[Fibonacci[# - JacobiSymbol[2, #], 2]/#, #] == 0 &]
-
PARI
is(n)=isprime(n) && (Mod([2,1;1,0],n^2)^(n-kronecker(2,n)))[2,1]==0 \\ Charles R Greathouse IV, Mar 04 2014
Formula
The condition for p to be a member of this sequence is A000129(p-e)/p == F(p-e, 2)/p == 0 (mod p), where F(p-e, 2) is the p-e'th Fibonacci polynomial evaluated at the argument 2, and e = (2/p) is a Jacobi Symbol.
Let PellQuotient(p) = A000129(p-e)/p, q_2 = (2^(p-1) - 1)/p = A007663(p) be the corresponding Fermat quotient of base 2, H(floor(p/8)) be a harmonic number, and e = (2/p) be a Jacobi Symbol. Then a result of Williams (1991), as refined by Sun (1995), shows that 2*PellQuotient(p) == -4*q_2 - H(floor(p/8)) (mod p).
Extensions
Name amended by Felix Fröhlich, May 26 2019
Comments