A238803 Number of ballot sequences of length 2n with exactly n fixed points.
1, 1, 3, 9, 29, 99, 357, 1351, 5343, 21993, 93923, 414969, 1892277, 8887291, 42912261, 212676951, 1080355463, 5617772049, 29868493827, 162204146857, 898874710797, 5078665886931, 29232738375653, 171294038649639, 1021117638212079, 6188701520663929
Offset: 0
Examples
For n=3 we have the following a(3) = 9 ballot sequences: [1,2,3,1,1,1], [1,2,3,1,2,3], [1,2,3,1,1,2], [1,2,3,1,2,1], [1,2,3,1,4,1], [1,2,3,1,4,2], [1,2,3,1,1,4], [1,2,3,1,2,4], [1,2,3,1,4,5]. Their corresponding tableaux are: : 1456 14 : 145 146 : 146 14 : 145 14 : 14 : : 2 25 : 26 25 : 2 26 : 2 25 : 2 : : 3 36 : 3 3 : 3 3 : 3 3 : 3 : : : : 5 5 : 6 6 : 5 : : : : : : 6 :
Links
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..750
- Wikipedia, Young tableau
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, 1, ((2*n-1) *a(n-1) +n*(n-2) *a(n-2)) / (n-1)) end: seq(a(n), n=0..35);
-
Mathematica
RecurrenceTable[{a[0]==a[1]==1,a[n]==((2n-1)a[n-1]+n(n-2)a[n-2])/(n-1)},a,{n,30}] (* Harvey P. Dale, Jun 25 2014 *)
Formula
a(n) = ((2*n-1)*a(n-1)+n*(n-2)*a(n-2))/(n-1) for n>1, a(0) = a(1) = 1.
a(n) = A238802(2*n,n).
a(n) = Sum_{k=0..n} C(n-1,k) * A000085(n-k).
a(n) ~ exp(2*sqrt(n)-n/2-1) * n^(n/2) / sqrt(2) * (1 - 1/(6*sqrt(n))). - Vaclav Kotesovec, Mar 07 2014
Comments