cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238829 a(n) = A238823(n) - A238826(n).

Original entry on oeis.org

1, 1, 2, 5, 12, 31, 77, 192, 474, 1170, 2881, 7097, 17477, 43050, 106043, 261235, 643552, 1585421, 3905750, 9621993, 23704161, 58396118, 143860974, 354406732, 873093707, 2150897733, 5298813853, 13053818630, 32158552201, 79223751853, 195170567014, 480809724213
Offset: 1

Views

Author

N. J. A. Sloane, Mar 08 2014

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,1,2,5,12,31,77]; [n le 7 select I[n] else 3*Self(n-1)-4*Self(n-3)+Self(n-4)+Self(n-5)+3*Self(n-6)-Self(n-7): n in [1..35]]
  • Maple
    g:=proc(n) option remember; local t1;
    t1:=[2,3,6,14,34,84,208,515];
    if n <= 7 then t1[n] else
    3*g(n-1)-4*g(n-3)+g(n-4)+g(n-5)+3*g(n-6)-g(n-7); fi; end proc;
    [seq(g(n),n=1..32)]; # A238823
    d:=proc(n) option remember; global g; local t1;
    t1:=[0,1];
    if n <= 2 then t1[n] else
    g(n-1)-2*d(n-1)-d(n-2); fi; end proc;
    [seq(d(n),n=1..32)]; # A238824
    p:=proc(n) option remember; global d; local t1;
    t1:=[0,0,0,1];
    if n <= 4 then t1[n] else
    p(n-2)+p(n-3)+2*(d(n-3)+d(n-4)); fi; end proc;
    [seq(p(n),n=1..32)]; # A238825
    h:=n->p(n+3)-p(n+1);
    [seq(h(n),n=1..32)]; #A238826
    r:=proc(n) option remember; global p; local t1;
    t1:=[0,0,0,0];
    if n <= 4 then t1[n] else
    r(n-2)+p(n-3); fi; end proc;
    [seq(r(n),n=1..32)]; # A238827
    [0,seq(d(n-1)+p(n),n=2..32)]; #A238828
    a:=n->g(n)-h(n);
    [seq(a(n),n=1..32)]; #A238829
  • Mathematica
    CoefficientList[Series[(1 - x) (2 x^5 + x^4 + x^3 - 2 x^2 - x + 1)/(1 - 3 x + 4 x^3 - x^4 - x^5 - 3 x^6 + x^7), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 21 2014 *)
    LinearRecurrence[{3,0,-4,1,1,3,-1},{1,1,2,5,12,31,77},40] (* Harvey P. Dale, Jun 08 2018 *)

Formula

G.f.: -x*(x-1)*(2*x^5+x^4+x^3-2*x^2-x+1) / ( 1-3*x+4*x^3-x^4-x^5-3*x^6+x^7 ). - R. J. Mathar, Mar 20 2014