A238823
a(n) = 3*a(n-1)-4*a(n-3)+a(n-4)+a(n-5)+3*a(n-6)-a(n-7) for n >= 8, with initial values as shown.
Original entry on oeis.org
2, 3, 6, 14, 34, 84, 208, 515, 1272, 3138, 7734, 19055, 46940, 115631, 284846, 701709, 1728662, 4258604, 10491218, 25845514, 63671404, 156856887, 386422704, 951966378, 2345203554, 5777493461, 14233063160, 35063663603, 86380598122, 212801715171, 524244692006, 1291495687122
Offset: 1
The initial values of Zhuravlev's sequences are as follows.
(The columns give n, A238829, A238828, A238824 (twice), A238830, A238833, A238832, A238825, A238831, A238827, A238826, A238823, respectively):
n a b c d i j e p q r h g
1 1 0 1 0 0 0 0 0 0 0 1 2
2 1 0 0 1 0 1 0 0 0 0 2 3
3 2 1 1 1 0 0 1 0 0 0 4 6
4 5 2 1 3 1 2 1 1 0 0 9 14
5 12 5 3 7 2 2 4 2 0 0 22 34
6 31 12 7 17 6 7 9 5 1 0 53 84
7 77 28 17 43 15 16 23 11 3 1 131 208
8 192 70 43 105 36 40 58 27 8 2 323 515
9 474 169 105 262 91 101 141 64 21 6 798 1272
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- K. A. Van'kov, V. M. Zhuravlyov, Regular tilings and generating functions, Mat. Pros. Ser. 3, issue 22, 2018 (127-157) [in Russian]. See page 128. - _N. J. A. Sloane_, Jan 09 2019
- Kirill Vankov, Valerii Zhuravlev, Regular and semiregular (uniform) tilings and generating functions, hal-02535947, [math.CO], 2020.
- Wikipedia, Polyiamond
- V. M. Zhuravlev, Horizontally-convex polyiamonds and their generating functions, Mat. Pros. 17 (2013), 107-129 (in Russian). See the sequence g(n). [Note the recurrence for g(n) in Theorem 1 contains a typo]
- Index entries for linear recurrences with constant coefficients, signature (3,0,-4,1,1,3,-1).
-
I:=[2,3,6,14,34,84,208,515]; [n le 8 select I[n] else 3*Self(n-1)-4*Self(n-3)+Self(n-4)+Self(n-5)+3*Self(n-6)-Self(n-7): n in [1..40]]; // Vincenzo Librandi, Mar 10 2014
-
g:=proc(n) option remember; local t1;
t1:=[2,3,6,14,34,84,208,515];
if n <= 7 then t1[n] else
3*g(n-1)-4*g(n-3)+g(n-4)+g(n-5)+3*g(n-6)-g(n-7); fi; end proc;
[seq(g(n),n=1..32)];
-
LinearRecurrence[{3, 0, -4, 1, 1, 3, -1}, {2, 3, 6, 14, 34, 84, 208}, 40] (* Vincenzo Librandi, Mar 10 2014 *)
A238830
a(1)=a(2)=0; thereafter a(n) = a(n-2)+A238828(n-1)+A238827(n).
Original entry on oeis.org
0, 0, 0, 1, 2, 6, 15, 36, 91, 218, 544, 1325, 3281, 8055, 19880, 48930, 120610, 297055, 731922, 1802994, 4441915, 10942602, 26957739, 66410994, 163606230, 403049273, 992926975, 2446110587, 6026082552, 14845470456, 36572353012, 90097307929
Offset: 1
- V. M. Zhuravlev, Horizontally-convex polyiamonds and their generating functions, Mat. Pros. 17 (2013), 107-129 (in Russian). See the sequence i(n).
- Index entries for linear recurrences with constant coefficients, signature (1,5,-1,-7,-1,6,6,1,-1).
-
g:=proc(n) option remember; local t1; t1:=[2,3,6,14,34,84,208,515];
if n <= 7 then t1[n] else
3*g(n-1)-4*g(n-3)+g(n-4)+g(n-5)+3*g(n-6)-g(n-7); fi; end proc;
[seq(g(n),n=1..32)]; # A238823
d:=proc(n) option remember; global g; local t1; t1:=[0,1];
if n <= 2 then t1[n] else
g(n-1)-2*d(n-1)-d(n-2); fi; end proc;
[seq(d(n),n=1..32)]; # A238824
p:=proc(n) option remember; global d; local t1; t1:=[0,0,0,1];
if n <= 4 then t1[n] else
p(n-2)+p(n-3)+2*(d(n-3)+d(n-4)); fi; end proc;
[seq(p(n),n=1..32)]; # A238825
h:=n->p(n+3)-p(n+1); [seq(h(n),n=1..32)]; #A238826
r:=proc(n) option remember; global p; local t1; t1:=[0,0,0,0];
if n <= 4 then t1[n] else
r(n-2)+p(n-3); fi; end proc;
[seq(r(n),n=1..32)]; # A238827
b:=n-> if n=1 then 0 else d(n-1)+p(n); fi; [seq(b(n),n=1..32)]; #A238828
a:=n->g(n)-h(n); [seq(a(n),n=1..32)]; #A238829
i:=proc(n) option remember; global b,r; local t1; t1:=[0,0];
if n <= 2 then t1[n] else
i(n-2)+b(n-1)+r(n); fi; end proc;
[seq(i(n),n=1..32)]; # A238830
-
LinearRecurrence[{1,5,-1,-7,-1,6,6,1,-1},{0,0,0,1,2,6,15,36,91},40] (* Harvey P. Dale, Dec 29 2021 *)
A238831
a(n) = 0 if n <= 2; thereafter a(n) = A238827(n) + A238830(n-2).
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 3, 8, 21, 49, 124, 295, 735, 1789, 4428, 10874, 26836, 66062, 162838, 401081, 988225, 2434388, 5997403, 14774547, 36397880, 89667011, 220898267, 544190131, 1340632638, 3302695932, 8136311688, 20044096016, 49379354928, 121647818677, 299683787423, 738281805364, 1818783831517
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- V. M. Zhuravlev, Horizontally-convex polyiamonds and their generating functions, Mat. Pros. 17 (2013), 107-129 (in Russian). See the sequence q(n).
- Index entries for linear recurrences with constant coefficients, signature (1,5,-1,-7,-1,6,6,1,-1).
-
m:=40; R:=LaurentSeriesRing(RationalField(), m); [0,0,0,0,0] cat Coefficients(R! -x^6*(x-1)*(2*x+1)*(x^2+x+1) / ((x+1)^2*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1))); // Vincenzo Librandi, Mar 21 2014
-
g:=proc(n) option remember; local t1; t1:=[2,3,6,14,34,84,208,515];
if n <= 7 then t1[n] else
3*g(n-1)-4*g(n-3)+g(n-4)+g(n-5)+3*g(n-6)-g(n-7); fi; end proc;
[seq(g(n),n=1..32)]; # A238823
d:=proc(n) option remember; global g; local t1; t1:=[0,1];
if n <= 2 then t1[n] else
g(n-1)-2*d(n-1)-d(n-2); fi; end proc;
[seq(d(n),n=1..32)]; # A238824
p:=proc(n) option remember; global d; local t1; t1:=[0,0,0,1];
if n <= 4 then t1[n] else
p(n-2)+p(n-3)+2*(d(n-3)+d(n-4)); fi; end proc;
[seq(p(n),n=1..32)]; # A238825
h:=n->p(n+3)-p(n+1); [seq(h(n),n=1..32)]; #A238826
r:=proc(n) option remember; global p; local t1; t1:=[0,0,0,0];
if n <= 4 then t1[n] else
r(n-2)+p(n-3); fi; end proc;
[seq(r(n),n=1..32)]; # A238827
b:=n-> if n=1 then 0 else d(n-1)+p(n); fi; [seq(b(n),n=1..32)]; #A238828
a:=n->g(n)-h(n); [seq(a(n),n=1..32)]; #A238829
i:=proc(n) option remember; global b,r; local t1; t1:=[0,0];
if n <= 2 then t1[n] else
i(n-2)+b(n-1)+r(n); fi; end proc;
[seq(i(n),n=1..32)]; # A238830
q:=n-> if n<=2 then 0 else r(n)+i(n-2); fi;
[seq(q(n),n=1..45)]; # A238831
-
CoefficientList[Series[- x^5 (x - 1) (2 x + 1) (x^2 + x + 1)/((x + 1)^2 (x^7 - 3 x^6 - x^5 - x^4 + 4 x^3 - 3 x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 21 2014 *)
-
concat([0,0,0,0,0], Vec(-x^6*(x-1)*(2*x+1)*(x^2+x+1)/((x+1)^2*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1)) + O(x^100))) \\ Colin Barker, Mar 20 2014
Original entry on oeis.org
0, 0, 1, 1, 4, 9, 23, 58, 141, 353, 861, 2134, 5236, 12924, 31798, 78382, 193029, 475619, 1171600, 2886427, 7110657, 17517598, 43154977, 106314193, 261908415, 645221312, 1589525242, 3915853416, 9646844896, 23765351096, 58546797181, 144232146189, 355321086856, 875346302897, 2156447153427, 5312485264678
Offset: 1
- V. M. Zhuravlev, Horizontally-convex polyiamonds and their generating functions, Mat. Pros. 17 (2013), 107-129 (in Russian). See the sequence e(n).
- Index entries for linear recurrences with constant coefficients, signature (1,5,-1,-7,-1,6,6,1,-1).
-
g:=proc(n) option remember; local t1; t1:=[2,3,6,14,34,84,208,515];
if n <= 7 then t1[n] else
3*g(n-1)-4*g(n-3)+g(n-4)+g(n-5)+3*g(n-6)-g(n-7); fi; end proc;
[seq(g(n),n=1..32)]; # A238823
d:=proc(n) option remember; global g; local t1; t1:=[0,1];
if n <= 2 then t1[n] else
g(n-1)-2*d(n-1)-d(n-2); fi; end proc;
[seq(d(n),n=1..32)]; # A238824
p:=proc(n) option remember; global d; local t1; t1:=[0,0,0,1];
if n <= 4 then t1[n] else
p(n-2)+p(n-3)+2*(d(n-3)+d(n-4)); fi; end proc;
[seq(p(n),n=1..32)]; # A238825
h:=n->p(n+3)-p(n+1); [seq(h(n),n=1..32)]; #A238826
r:=proc(n) option remember; global p; local t1; t1:=[0,0,0,0];
if n <= 4 then t1[n] else
r(n-2)+p(n-3); fi; end proc;
[seq(r(n),n=1..32)]; # A238827
b:=n-> if n=1 then 0 else d(n-1)+p(n); fi; [seq(b(n),n=1..32)]; #A238828
a:=n->g(n)-h(n); [seq(a(n),n=1..32)]; #A238829
i:=proc(n) option remember; global b,r; local t1; t1:=[0,0];
if n <= 2 then t1[n] else
i(n-2)+b(n-1)+r(n); fi; end proc;
[seq(i(n),n=1..32)]; # A238830
q:=n-> if n<=2 then 0 else r(n)+i(n-2); fi;
[seq(q(n),n=1..45)]; # A238831
e:=n-> if n<=1 then 0 else d(n-1)+i(n-1); fi;
[seq(e(n),n=1..45)]; # A238832
-
concat([0,0], Vec(x^3*(2*x^5+2*x^4+x^3-2*x^2+1)/((x+1)^2*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1)) + O(x^100))) \\ Colin Barker, Mar 20 2014
A238833
a(n) = n-1 for n <= 2; thereafter a(n) = A238824(n-2) + A238832(n-1).
Original entry on oeis.org
0, 1, 0, 2, 2, 7, 16, 40, 101, 246, 615, 1504, 3724, 9147, 22567, 55541, 136884, 337128, 830628, 2046145, 5040932, 12418320, 30593281, 75367352, 185670647, 457405836, 1126836394, 2776001211, 6838779857, 16847579205, 41504619640, 102248123906, 251891939366, 620544865783, 1528734638988, 3766092860744
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- V. M. Zhuravlev, Horizontally-convex polyiamonds and their generating functions, Mat. Pros. 17 (2013), 107-129 (in Russian). See the sequence j(n).
- Index entries for linear recurrences with constant coefficients, signature (1,5,-1,-7,-1,6,6,1,-1).
-
m:=40; R:=LaurentSeriesRing(RationalField(), m); [0] cat Coefficients(R! -x^2*(x^8+2*x^7+x^6-2*x^5-2*x^4-x^3+3*x^2+x-1) / ((x+1)^2*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1))); // Vincenzo Librandi, Mar 21 2014
-
g:=proc(n) option remember; local t1; t1:=[2,3,6,14,34,84,208,515];
if n <= 7 then t1[n] else
3*g(n-1)-4*g(n-3)+g(n-4)+g(n-5)+3*g(n-6)-g(n-7); fi; end proc;
[seq(g(n),n=1..32)]; # A238823
d:=proc(n) option remember; global g; local t1; t1:=[0,1];
if n <= 2 then t1[n] else
g(n-1)-2*d(n-1)-d(n-2); fi; end proc;
[seq(d(n),n=1..32)]; # A238824
p:=proc(n) option remember; global d; local t1; t1:=[0,0,0,1];
if n <= 4 then t1[n] else
p(n-2)+p(n-3)+2*(d(n-3)+d(n-4)); fi; end proc;
[seq(p(n),n=1..32)]; # A238825
h:=n->p(n+3)-p(n+1); [seq(h(n),n=1..32)]; #A238826
r:=proc(n) option remember; global p; local t1; t1:=[0,0,0,0];
if n <= 4 then t1[n] else
r(n-2)+p(n-3); fi; end proc;
[seq(r(n),n=1..32)]; # A238827
b:=n-> if n=1 then 0 else d(n-1)+p(n); fi; [seq(b(n),n=1..32)]; #A238828
a:=n->g(n)-h(n); [seq(a(n),n=1..32)]; #A238829
i:=proc(n) option remember; global b,r; local t1; t1:=[0,0];
if n <= 2 then t1[n] else
i(n-2)+b(n-1)+r(n); fi; end proc;
[seq(i(n),n=1..32)]; # A238830
q:=n-> if n<=2 then 0 else r(n)+i(n-2); fi;
[seq(q(n),n=1..45)]; # A238831
e:=n-> if n<=1 then 0 else d(n-1)+i(n-1); fi;
[seq(e(n),n=1..45)]; # A238832
j:=n-> if n<=2 then n-1 else d(n-2)+e(n-1); fi;
[seq(j(n),n=1..45)]; # A238833
-
CoefficientList[Series[- x (x^8 + 2 x^7 + x^6 - 2 x^5 - 2 x^4 - x^3 + 3 x^2 + x - 1)/((x + 1)^2 (x^7 - 3 x^6 - x^5 - x^4 + 4 x^3 - 3 x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 21 2014 *)
LinearRecurrence[{1,5,-1,-7,-1,6,6,1,-1},{0,1,0,2,2,7,16,40,101,246},40] (* Harvey P. Dale, Jul 23 2021 *)
-
concat(0, Vec(-x^2*(x^8+2*x^7+x^6-2*x^5-2*x^4-x^3+3*x^2+x-1)/((x+1)^2*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1)) + O(x^100))) \\ Colin Barker, Mar 20 2014
Showing 1-5 of 5 results.
Comments