cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238963 Number of divisors of A063008(n,k).

Original entry on oeis.org

1, 2, 3, 4, 4, 6, 8, 5, 8, 9, 12, 16, 6, 10, 12, 16, 18, 24, 32, 7, 12, 15, 20, 16, 24, 32, 27, 36, 48, 64, 8, 14, 18, 24, 20, 30, 40, 32, 36, 48, 64, 54, 72, 96, 128, 9, 16, 21, 28, 24, 36, 48, 25, 40, 45, 60, 80, 48, 64, 72, 96, 128, 81, 108, 144, 192, 256, 10, 18, 24, 32, 28, 42, 56, 30, 48, 54, 72, 96, 50, 60, 80, 90, 120, 160, 64, 96, 128, 108, 144, 192, 256, 162, 216, 288, 384, 512
Offset: 0

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Comments

Equivalent to A074139 but using canonical order.

Examples

			Triangle begins:
  1;
  2;
  3,  4;
  4,  6,  8;
  5,  8,  9, 12, 16;
  6, 10, 12, 16, 18, 24, 32;
  7, 12, 15, 20, 16, 24, 32, 27, 36, 48, 64;
  ...
		

Crossrefs

Row sums are A074141.

Programs

  • Maple
    b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
        [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
    T:= n-> map(x-> numtheory[tau](mul(ithprime(i)
            ^x[i], i=1..nops(x))), b(n$2))[]:
    seq(T(n), n=0..9);  # Alois P. Heinz, Mar 24 2020
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {Table[1, {n}]}, Join[Prepend[#, i]& /@ b[n - i, Min[n - i, i]], b[n, i - 1]]];
    T[n_] := DivisorSigma[0, #]&[Product[Prime[i]^#[[i]], {i, 1, Length[#]}]& /@ b[n, n]];
    T /@ Range[0, 9] // Flatten (* Jean-François Alcover, Jan 09 2025, after Alois P. Heinz *)
  • PARI
    \\ here b(n) is A000005.
    b(n)={numdiv(n)}
    N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
    Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 24 2020
    
  • SageMath
    def A238963row(n):
        return list(product(t + 1 for t in p) for p in Partitions(n))
    print([A238963row(n) for n in range(10)])  # Peter Luschny, Dec 11 2023

Formula

T(n, k) = A000005(A063008(n,k)).
Trow(n) = List_{p in Partitions(n)} (Product_{t in p}(t + 1)). # Peter Luschny, Dec 11 2023

Extensions

Offset corrected by Andrew Howroyd, Mar 24 2020