A238964 Size of divisor lattice in canonical order.
0, 1, 2, 4, 3, 7, 12, 4, 10, 12, 20, 32, 5, 13, 17, 28, 33, 52, 80, 6, 16, 22, 36, 24, 46, 72, 54, 84, 128, 192, 7, 19, 27, 44, 31, 59, 92, 64, 75, 116, 176, 135, 204, 304, 448, 8, 22, 32, 52, 38, 72, 112, 40, 82, 96, 148, 224, 104, 160, 186, 280, 416, 216, 324, 480, 704, 1024
Offset: 0
Examples
Triangle T(n,k) begins: 0; 1; 2, 4; 3, 7, 12; 4, 10, 12, 20, 32; 5, 13, 17, 28, 33, 52, 80; 6, 16, 22, 36, 24, 46, 72, 54, 84, 128, 192; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..2713 (rows 0..20)
- S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arxiv:1405.5283 [math.NT], 2014.
Programs
-
Maple
with(numtheory): b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x-> [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]): T:= n-> map(x-> (p-> add(nops(factorset(d)), d=divisors (p)))(mul(ithprime(i)^x[i], i=1..nops(x))), b(n$2))[]: seq(T(n), n=0..9); # Alois P. Heinz, Mar 24 2020
-
Mathematica
A062799[n_] := PrimeNu[Divisors[n]] // Total; b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {Table[1, {n}]}, Join[Prepend[#, i]& /@ b[n - i, Min[n - i, i]], b[n, i - 1]]]; A063008[n_] := Product[Prime[i]^#[[i]], {i, 1, Length[#]}]& /@ b[n, n]; T[n_] := A062799 /@ A063008[n]; Table[T[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Apr 16 2025, after Alois P. Heinz in A063008 *)
-
PARI
\\ here b(n) is A062799. b(n)={sumdiv(n, d, omega(d))} N(sig)={prod(k=1, #sig, prime(k)^sig[k])} Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))} {concat(vector(9, n, Row(n-1)))} \\ Andrew Howroyd, Mar 24 2020
Formula
Extensions
Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 24 2020