cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238964 Size of divisor lattice in canonical order.

Original entry on oeis.org

0, 1, 2, 4, 3, 7, 12, 4, 10, 12, 20, 32, 5, 13, 17, 28, 33, 52, 80, 6, 16, 22, 36, 24, 46, 72, 54, 84, 128, 192, 7, 19, 27, 44, 31, 59, 92, 64, 75, 116, 176, 135, 204, 304, 448, 8, 22, 32, 52, 38, 72, 112, 40, 82, 96, 148, 224, 104, 160, 186, 280, 416, 216, 324, 480, 704, 1024
Offset: 0

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Examples

			Triangle T(n,k) begins:
  0;
  1;
  2,  4;
  3,  7, 12;
  4, 10, 12, 20, 32;
  5, 13, 17, 28, 33, 52, 80;
  6, 16, 22, 36, 24, 46, 72, 54, 84, 128, 192;
  ...
		

Crossrefs

Cf. A238953 in canonical order.

Programs

  • Maple
    with(numtheory):
    b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
        [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
    T:= n-> map(x-> (p-> add(nops(factorset(d)), d=divisors
        (p)))(mul(ithprime(i)^x[i], i=1..nops(x))), b(n$2))[]:
    seq(T(n), n=0..9);  # Alois P. Heinz, Mar 24 2020
  • Mathematica
    A062799[n_] := PrimeNu[Divisors[n]] // Total;
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {Table[1, {n}]}, Join[Prepend[#, i]& /@ b[n - i, Min[n - i, i]], b[n, i - 1]]];
    A063008[n_] := Product[Prime[i]^#[[i]], {i, 1, Length[#]}]& /@ b[n, n];
    T[n_] := A062799 /@ A063008[n];
    Table[T[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Apr 16 2025, after Alois P. Heinz in A063008 *)
  • PARI
    \\ here b(n) is A062799.
    b(n)={sumdiv(n, d, omega(d))}
    N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
    Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
    {concat(vector(9, n, Row(n-1)))} \\ Andrew Howroyd, Mar 24 2020

Formula

T(n,k) = A062799(A063008(n,k)). - Andrew Howroyd, Mar 24 2020

Extensions

Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 24 2020