A238953 The size of divisor lattice D(n) in graded (reflected or not) colexicographic order of exponents.
0, 1, 2, 4, 3, 7, 12, 4, 10, 12, 20, 32, 5, 13, 17, 28, 33, 52, 80, 6, 16, 22, 24, 36, 46, 54, 72, 84, 128, 192, 7, 19, 27, 31, 44, 59, 64, 75, 92, 116, 135, 176, 204, 304, 448, 8, 22, 32, 38, 40, 52, 72, 82, 96, 104, 112, 148, 160, 186, 216, 224, 280, 324, 416, 480, 704, 1024
Offset: 0
Examples
Triangle T(n,k) begins: 0; 1; 2, 4; 3, 7, 12; 4, 10, 12, 20, 32; 5, 13, 17, 28, 33, 52, 80; 6, 16, 22, 24, 36, 46, 54, 72, 84, 128, 192; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..2713 (rows 0..20)
- S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arxiv:1405.5283 [math.NT], 2014.
Programs
-
PARI
\\ here b(n) is A062799. b(n)={sumdiv(n, d, omega(d))} N(sig)={prod(k=1, #sig, prime(k)^sig[k])} Row(n)={apply(s->b(N(s)), [Vecrev(p) | p<-partitions(n)])} { for(n=0, 6, print(Row(n))) } \\ Andrew Howroyd, Apr 25 2020
Extensions
Offset changed and terms a(64) and beyond from Andrew Howroyd, Apr 25 2020