cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A238953 The size of divisor lattice D(n) in graded (reflected or not) colexicographic order of exponents.

Original entry on oeis.org

0, 1, 2, 4, 3, 7, 12, 4, 10, 12, 20, 32, 5, 13, 17, 28, 33, 52, 80, 6, 16, 22, 24, 36, 46, 54, 72, 84, 128, 192, 7, 19, 27, 31, 44, 59, 64, 75, 92, 116, 135, 176, 204, 304, 448, 8, 22, 32, 38, 40, 52, 72, 82, 96, 104, 112, 148, 160, 186, 216, 224, 280, 324, 416, 480, 704, 1024
Offset: 0

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Examples

			Triangle T(n,k) begins:
  0;
  1;
  2,  4;
  3,  7, 12;
  4, 10, 12, 20, 32;
  5, 13, 17, 28, 33, 52, 80;
  6, 16, 22, 24, 36, 46, 54, 72, 84, 128, 192;
  ...
		

Crossrefs

Cf. A062799 in graded colexicographic order.

Programs

  • PARI
    \\ here b(n) is A062799.
    b(n)={sumdiv(n, d, omega(d))}
    N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
    Row(n)={apply(s->b(N(s)), [Vecrev(p) | p<-partitions(n)])}
    { for(n=0, 6, print(Row(n))) } \\ Andrew Howroyd, Apr 25 2020

Formula

T(n,k) = A062799(A036035(n,k)).

Extensions

Offset changed and terms a(64) and beyond from Andrew Howroyd, Apr 25 2020

A238972 The number of arcs from even to odd level vertices in divisor lattice in canonical order.

Original entry on oeis.org

0, 1, 1, 2, 2, 4, 6, 2, 5, 6, 10, 16, 3, 7, 9, 14, 17, 26, 40, 3, 8, 11, 18, 12, 23, 36, 27, 42, 64, 96, 4, 10, 14, 22, 16, 30, 46, 32, 38, 58, 88, 68, 102, 152, 224, 4, 11, 16, 26, 19, 36, 56, 20, 41, 48, 74, 112, 52, 80, 93, 140, 208, 108, 162, 240, 352, 512
Offset: 0

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Examples

			Triangle T(n,k) begins:
  0;
  1;
  1, 2;
  2, 4,  6;
  2, 5,  6, 10, 16;
  3, 7,  9, 14, 17, 26, 40;
  3, 8, 11, 18, 12, 23, 36, 27, 42, 64, 96;
  ...
		

Crossrefs

Cf. A238959 in canonical order.

Programs

  • Maple
    with(numtheory):
    b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
        [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
    T:= n-> map(x-> ceil((p-> add(nops(factorset(d)), d=divisors
        (p)))(mul(ithprime(i)^x[i], i=1..nops(x)))/2), b(n$2))[]:
    seq(T(n), n=0..9);  # Alois P. Heinz, Mar 28 2020

Formula

From Andrew Howroyd, Mar 28 2020: (Start)
T(n,k) = A238950(A063008(n,k)).
T(n,k) = A238964(n,k) - A238973(n,k).
T(n,k) = ceiling(A238964(n,k)/2). (End)

Extensions

Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 28 2020

A238973 The number of arcs from odd to even level vertices in divisor lattice in canonical order.

Original entry on oeis.org

0, 0, 1, 2, 1, 3, 6, 2, 5, 6, 10, 16, 2, 6, 8, 14, 16, 26, 40, 3, 8, 11, 18, 12, 23, 36, 27, 42, 64, 96, 3, 9, 13, 22, 15, 29, 46, 32, 37, 58, 88, 67, 102, 152, 224, 4, 11, 16, 26, 19, 36, 56, 20, 41, 48, 74, 112, 52, 80, 93, 140, 208, 108, 162, 240, 352, 512
Offset: 0

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Examples

			Triangle T(n,k) begins:
  0;
  0;
  1, 2;
  1, 3,  6;
  2, 5,  6, 10, 16;
  2, 6,  8, 14, 16, 26, 40;
  3, 8, 11, 18, 12, 23, 36, 27, 42, 64, 96;
  ...
		

Crossrefs

Cf. A238960 in canonical order.

Formula

From Andrew Howroyd, Mar 28 2020: (Start)
T(n,k) = A238951(A063008(n,k)).
T(n,k) = A238964(n,k) - A238972(n,k).
T(n,k) = floor(A238964(n,k)/2). (End)

Extensions

Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 28 2020
Showing 1-3 of 3 results.