A238970 The number of nodes at even level in divisor lattice in canonical order.
1, 1, 2, 2, 2, 3, 4, 3, 4, 5, 6, 8, 3, 5, 6, 8, 9, 12, 16, 4, 6, 8, 10, 8, 12, 16, 14, 18, 24, 32, 4, 7, 9, 12, 10, 15, 20, 16, 18, 24, 32, 27, 36, 48, 64, 5, 8, 11, 14, 12, 18, 24, 13, 20, 23, 30, 40, 24, 32, 36, 48, 64, 41, 54, 72, 96, 128
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1; 2, 2; 2, 3, 4; 3, 4, 5, 6, 8; 3, 5, 6, 8, 9, 12, 16; 4, 6, 8, 10, 8, 12, 16, 14, 18, 24, 32; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..2713 (rows 0..20)
- S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arxiv:1405.5283 [math.NT], 2014.
Crossrefs
Programs
-
Maple
b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x-> [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]): T:= n-> map(x-> ceil(numtheory[tau](mul(ithprime(i) ^x[i], i=1..nops(x)))/2), b(n$2))[]: seq(T(n), n=0..9); # Alois P. Heinz, Mar 25 2020
-
Mathematica
A063008row[n_] := Product[Prime[k]^#[[k]], {k, 1, Length[#]}]& /@ IntegerPartitions[n]; A038548[n_] := Ceiling[DivisorSigma[0, n]/2]; T[n_] := A038548 /@ A063008row[n]; Table[T[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Jan 30 2025 *)
-
PARI
\\ here b(n) is A038548. b(n)={ceil(numdiv(n)/2)} N(sig)={prod(k=1, #sig, prime(k)^sig[k])} Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))} { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 25 2020
Formula
Extensions
Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 25 2020