A238972 The number of arcs from even to odd level vertices in divisor lattice in canonical order.
0, 1, 1, 2, 2, 4, 6, 2, 5, 6, 10, 16, 3, 7, 9, 14, 17, 26, 40, 3, 8, 11, 18, 12, 23, 36, 27, 42, 64, 96, 4, 10, 14, 22, 16, 30, 46, 32, 38, 58, 88, 68, 102, 152, 224, 4, 11, 16, 26, 19, 36, 56, 20, 41, 48, 74, 112, 52, 80, 93, 140, 208, 108, 162, 240, 352, 512
Offset: 0
Examples
Triangle T(n,k) begins: 0; 1; 1, 2; 2, 4, 6; 2, 5, 6, 10, 16; 3, 7, 9, 14, 17, 26, 40; 3, 8, 11, 18, 12, 23, 36, 27, 42, 64, 96; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..2713 (rows 0..20)
- S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arxiv:1405.5283 [math.NT], 2014.
Programs
-
Maple
with(numtheory): b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x-> [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]): T:= n-> map(x-> ceil((p-> add(nops(factorset(d)), d=divisors (p)))(mul(ithprime(i)^x[i], i=1..nops(x)))/2), b(n$2))[]: seq(T(n), n=0..9); # Alois P. Heinz, Mar 28 2020
Formula
Extensions
Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 28 2020