cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238974 The size (the number of arcs) in the transitive closure of divisor lattice in canonical order.

Original entry on oeis.org

0, 1, 3, 5, 6, 12, 19, 10, 22, 27, 42, 65, 15, 35, 48, 74, 90, 138, 211, 21, 51, 75, 115, 84, 156, 238, 189, 288, 438, 665, 28, 70, 108, 165, 130, 240, 365, 268, 324, 492, 746, 594, 900, 1362, 2059, 36, 92, 147, 224, 186, 342, 519, 200, 410, 495, 750, 1135, 552, 836, 1008, 1524, 2302, 1215, 1836, 2772, 4182, 6305
Offset: 0

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Examples

			Triangle T(n,k) begins:
   0;
   1;
   3,  5;
   6, 12, 19;
  10, 22, 27,  42, 65;
  15, 35, 48,  74, 90, 138, 211;
  21, 51, 75, 115, 84, 156, 238, 189, 288, 438, 665;
  ...
		

Crossrefs

Cf. A238961 in canonical order.

Programs

  • Maple
    with(numtheory):
    f:= n-> add(tau(d), d=divisors(n) minus {n}):
    b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
        [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
    T:= n-> map(x-> f(mul(ithprime(i)^x[i], i=1..nops(x))), b(n$2))[]:
    seq(T(n), n=0..9);  # Alois P. Heinz, Mar 26 2020
  • PARI
    \\ here b(n) is A238952.
    b(n) = {sumdivmult(n, d, numdiv(d)) - numdiv(n)}
    N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
    Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 26 2020

Formula

T(n,k) = A238952(A063008(n,k)). - Andrew Howroyd, Mar 26 2020

Extensions

Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 26 2020