cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238975 Number of perfect partitions in canonical order.

Original entry on oeis.org

1, 1, 2, 3, 4, 8, 13, 8, 20, 26, 44, 75, 16, 48, 76, 132, 176, 308, 541, 32, 112, 208, 368, 252, 604, 1076, 818, 1460, 2612, 4683, 64, 256, 544, 976, 768, 1888, 3408, 2316, 3172, 5740, 10404, 7880, 14300, 25988, 47293, 128, 576, 1376, 2496, 2208, 5536, 10096, 2568
Offset: 0

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Examples

			Triangle T(n,k) begins:
   1;
   1;
   2,   3;
   4,   8,  13;
   8,  20,  26,  44,  75;
  16,  48,  76, 132, 176, 308,  541;
  32, 112, 208, 368, 252, 604, 1076, 818, 1460, 2612, 4683;
  ...
		

Crossrefs

Row sums are A035341.
Cf. A238962 in canonical order, A002033.

Programs

  • Maple
    g:= proc(n) option remember; (1+add(g(n/d),
          d=numtheory[divisors](n) minus {1, n}))
        end:
    b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
        [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
    T:= n-> map(x-> g(mul(ithprime(i)^x[i], i=1..nops(x))), b(n$2))[]:
    seq(T(n), n=0..9);  # Alois P. Heinz, Apr 26 2020
  • Mathematica
    (* b is A074206 *)
    b[n_] := b[n] = If[n < 2, n, b /@ Most[Divisors[n]] // Total];
    T[n_] := b /@ (Product[Prime[k]^#[[k]], {k, 1, Length[#]}]& /@ IntegerPartitions[n]);
    T /@ Range[0, 9] // Flatten (* Jean-François Alcover, Jan 04 2021 *)
  • PARI
    \\ here b(n) is A074206.
    N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
    b(n)={if(!n, 0, my(sig=factor(n)[,2], m=vecsum(sig)); sum(k=0, m, prod(i=1, #sig, binomial(sig[i]+k-1, k-1))*sum(r=k, m, binomial(r,k)*(-1)^(r-k))))}
    Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
    { for(n=0, 6, print(Row(n))) } \\ Andrew Howroyd, Aug 30 2020

Formula

T(n,k) = A074206(A063008(n,k)). - Andrew Howroyd, Apr 26 2020

Extensions

Offset changed and terms a(42) and beyond from Andrew Howroyd, Apr 26 2020