A239035 Product of 8 consecutive integers. a(n) = RisingFactorial(n, 8).
0, 40320, 362880, 1814400, 6652800, 19958400, 51891840, 121080960, 259459200, 518918400, 980179200, 1764322560, 3047466240, 5079110400, 8204716800, 12893126400, 19769460480, 29654190720, 43609104000, 62990928000, 89513424000, 125318793600, 173059286400
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Vincent Thill, Nombres consécutifs et carrés, author's blog, Aug 03 2013 (consecutive numbers and squares).
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Crossrefs
Programs
-
Magma
[(n^4+14*n^3+63*n^2+98*n+28)^2-(28+8*n)^2: n in [0..30]]; // Vincenzo Librandi, Mar 11 2014
-
Mathematica
CoefficientList[Series[40320 x/(1 - x)^9, {x, 0, 30}], x] (* Vincenzo Librandi, Mar 11 2014 *)
-
PARI
a(n) = prod(k=0, 7, n+k);
-
PARI
concat([0], Vec(40320*x/(1-x)^9 + O(x^100))) \\ Colin Barker, Mar 09 2014
-
Sage
print([rising_factorial(n, 8) for n in range(23)]) # Peter Luschny, Mar 22 2022
Formula
a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(n+7).
a(n) = (n^4+14*n^3+63*n^2+98*n+28)^2 - (28+8*n)^2. (see Thill link).
G.f.: 40320*x / (1-x)^9. - Colin Barker, Mar 09 2014
From Amiram Eldar, Mar 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/35280.
Sum_{n>=1} (-1)^(n+1)/a(n) = 8*log(2)/315 - 1163/66150. (End)