cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A265609 Array read by ascending antidiagonals: A(n,k) the rising factorial, also known as Pochhammer symbol, for n >= 0 and k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 6, 0, 1, 4, 12, 24, 24, 0, 1, 5, 20, 60, 120, 120, 0, 1, 6, 30, 120, 360, 720, 720, 0, 1, 7, 42, 210, 840, 2520, 5040, 5040, 0, 1, 8, 56, 336, 1680, 6720, 20160, 40320, 40320, 0
Offset: 0

Views

Author

Peter Luschny, Dec 19 2015

Keywords

Comments

The Pochhammer function is defined P(x,n) = x*(x+1)*...*(x+n-1). By convention P(0,0) = 1.
From Antti Karttunen, Dec 19 2015: (Start)
Apart from the initial row of zeros, if we discard the leftmost column and divide the rest of terms A(n,k) with (n+k) [where k is now the once-decremented column index of the new, shifted position] we get the same array back. See the given recursive formula.
When the numbers in array are viewed in factorial base (A007623), certain repeating patterns can be discerned, at least in a few of the topmost rows. See comment in A001710 and arrays A265890, A265892. (End)
A(n,k) is the k-th moment (about 0) of a gamma (Erlang) distribution with shape parameter n and rate parameter 1. - Geoffrey Critzer, Dec 24 2018

Examples

			Square array A(n,k) [where n=row, k=column] is read by ascending antidiagonals as:
A(0,0), A(1,0), A(0,1), A(2,0), A(1,1), A(0,2), A(3,0), A(2,1), A(1,2), A(0,3), ...
Array starts:
n\k [0  1   2    3     4      5        6         7          8]
--------------------------------------------------------------
[0] [1, 0,  0,   0,    0,     0,       0,        0,         0]
[1] [1, 1,  2,   6,   24,   120,     720,     5040,     40320]
[2] [1, 2,  6,  24,  120,   720,    5040,    40320,    362880]
[3] [1, 3, 12,  60,  360,  2520,   20160,   181440,   1814400]
[4] [1, 4, 20, 120,  840,  6720,   60480,   604800,   6652800]
[5] [1, 5, 30, 210, 1680, 15120,  151200,  1663200,  19958400]
[6] [1, 6, 42, 336, 3024, 30240,  332640,  3991680,  51891840]
[7] [1, 7, 56, 504, 5040, 55440,  665280,  8648640, 121080960]
[8] [1, 8, 72, 720, 7920, 95040, 1235520, 17297280, 259459200]
.
Seen as a triangle, T(n, k) = Pochhammer(n - k, k), the first few rows are:
   [0] 1;
   [1] 1, 0;
   [2] 1, 1,  0;
   [3] 1, 2,  2,   0;
   [4] 1, 3,  6,   6,    0;
   [5] 1, 4, 12,  24,   24,    0;
   [6] 1, 5, 20,  60,  120,  120,     0;
   [7] 1, 6, 30, 120,  360,  720,   720,     0;
   [8] 1, 7, 42, 210,  840, 2520,  5040,  5040,     0;
   [9] 1, 8, 56, 336, 1680, 6720, 20160, 40320, 40320, 0.
		

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, Addison-Wesley, 1994.
  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 355.

Crossrefs

Triangle giving terms only up to column k=n: A124320.
Row 0: A000007, row 1: A000142, row 3: A001710 (from k=1 onward, shifted two terms left).
Column 0: A000012, column 1: A001477, column 2: A002378, columns 3-7: A007531, A052762, A052787, A053625, A159083 (shifted 2 .. 6 terms left respectively, i.e. without the extra initial zeros), column 8: A239035.
Row sums of the triangle: A000522.
A(n, n) = A000407(n-1) for n>0.
2^n*A(1/2,n) = A001147(n).
Cf. also A007623, A008279 (falling factorial), A173333, A257505, A265890, A265892.

Programs

  • Maple
    for n from 0 to 8 do seq(pochhammer(n,k), k=0..8) od;
  • Mathematica
    Table[Pochhammer[n, k], {n, 0, 8}, {k, 0, 8}]
  • Sage
    for n in (0..8): print([rising_factorial(n,k) for k in (0..8)])
    
  • Scheme
    (define (A265609 n) (A265609bi (A025581 n) (A002262 n)))
    (define (A265609bi row col) (if (zero? col) 1 (* (+ row col -1) (A265609bi row (- col 1)))))
    ;; Antti Karttunen, Dec 19 2015

Formula

A(n,k) = Gamma(n+k)/Gamma(n) for n > 0 and n^k for n=0.
A(n,k) = Sum_{j=0..k} n^j*S1(k,j), S1(n,k) the Stirling cycle numbers A132393(n,k).
A(n,k) = (k-1)!/(Sum_{j=0..k-1} (-1)^j*binomial(k-1, j)/(j+n)) for n >= 1, k >= 1.
A(n,k) = (n+k-1)*A(n,k-1) for k >= 1, A(n,0) = 1. - Antti Karttunen, Dec 19 2015
E.g.f. for row k: 1/(1-x)^k. - Geoffrey Critzer, Dec 24 2018
A(n, k) = FallingFactorial(n + k - 1, k). - Peter Luschny, Mar 22 2022
G.f. for row n as a continued fraction of Stieltjes type: 1/(1 - n*x/(1 - x/(1 - (n+1)*x/(1 - 2*x/(1 - (n+2)*x/(1 - 3*x/(1 - ... ))))))). See Wall, Chapter XVIII, equation 92.5. Cf. A226513. - Peter Bala, Aug 27 2023

A346376 a(n) = n^4 + 14*n^3 + 63*n^2 + 98*n + 28.

Original entry on oeis.org

28, 204, 604, 1348, 2580, 4468, 7204, 11004, 16108, 22780, 31308, 42004, 55204, 71268, 90580, 113548, 140604, 172204, 208828, 250980, 299188, 354004, 416004, 485788, 563980, 651228, 748204, 855604, 974148, 1104580, 1247668, 1404204, 1575004, 1760908, 1962780
Offset: 0

Views

Author

Lamine Ngom, Jul 14 2021

Keywords

Comments

The product of eight consecutive positive integers can always be expressed as the difference of two squares: x^2 - y^2.
This sequence gives the x-values for each product. The y-values are A017113(n+4).
a(n) is always divisible by 4. In addition, we have (a(n)+16)/4 belongs to A028387.
Are 4 and 8 the unique values of k such that the product of k consecutive integers is always distant to upper square by a square?

Crossrefs

Formula

a(n) = A239035(n)^2 - A017113(n+4)^2.
a(n) = 4*(A028387(A046691(n+2)) - 4).
G.f.: 4*(7 + 16*x - 34*x^2 + 22*x^3 - 5*x^4)/(1 - x)^5. - Stefano Spezia, Jul 14 2021

A346514 a(n) = n^4 + 28*n^3 + 252*n^2 + 784*n + 448.

Original entry on oeis.org

448, 1513, 3264, 5905, 9664, 14793, 21568, 30289, 41280, 54889, 71488, 91473, 115264, 143305, 176064, 214033, 257728, 307689, 364480, 428689, 500928, 581833, 672064, 772305, 883264, 1005673, 1140288, 1287889, 1449280, 1625289, 1816768, 2024593, 2249664, 2492905, 2755264
Offset: 0

Views

Author

Lamine Ngom, Jul 21 2021

Keywords

Comments

The product of eight positive integers shifted by 2; i.e., m * (m+2) * (m+4) * ... * (m+14) = A346515(m) can always be expressed as the difference of two squares: x^2 - y^2.
This sequence gives the x-values for each product. The y-values are A152691(n+7).
More generally, for any k, we have n * (n+k) * (n+2*k) * ... * (n+7*k) = a(n,k) = x(n,k)^2 - y(n,k)^2, where
x(n,k) = n^4 + 14*k*n^3 + 63*k^2*n^2 + 98*k^3*n + 28*k^4,
y(n,k) = 4*k^3*(2*n + 7*k).
A239035(n) corresponds to a(n,k) in the case k = 1, with related y(n,k) = A346376(n).
This sequence is y(n,k) in the case k = 2, with related y(n,k) = A152691(n+7).

Crossrefs

Formula

a(n) = sqrt(A346515(n) + A152691(n+7)^2).
G.f.: (448 - 727*x + 179*x^2 + 235*x^3 - 111*x^4)/(1 - x)^5. - Stefano Spezia, Jul 22 2021

A346515 a(n) = n*(n+2)*(n+4)*(n+6)*(n+8)*(n+10)*(n+12)*(n+14).

Original entry on oeis.org

0, 2027025, 10321920, 34459425, 92897280, 218243025, 464486400, 916620705, 1703116800, 3011753745, 5109350400, 8365982625, 13284311040, 20534684625, 30996725760, 45808142625, 66421555200, 94670161425, 132843110400, 183771489825, 250925875200, 338526428625, 451666575360
Offset: 0

Views

Author

Lamine Ngom, Jul 21 2021

Keywords

Comments

a(n) can always be expressed as the difference of two squares: x^2 - y^2.
A346514(n) gives the x-values for each product. The y-values being A152691(n+7).
More generally, for any k, we have: n*(n+k)*(n+2*k)*...*(n+7*k) = a(n,k) = x(n,k)^2 - y(n,k)^2, where
x(n,k) = n^4 + 14*k*n^3 + 63*k^2*n^2 + 98*k^3*n + 28*k^4,
y(n,k) = 8*k^3*n + 28*k^4.
A239035(n) corresponds to a(n,k) in the case k = 1, with related y(n,k) = A346376(n).

Crossrefs

Programs

  • Mathematica
    a[n_] := (n + 14)!!/(n - 2)!!; Array[a, 23, 0] (* Amiram Eldar, Jul 22 2021 *)

Formula

a(n) = A346514(n)^2 - A152691(n+7)^2.

A325480 a(n) is the largest integer m such that the product of n consecutive integers starting at m is divisible by at most n primes.

Original entry on oeis.org

16, 24, 24, 45, 48, 49, 120, 120, 125, 189, 240, 240, 350, 350, 350, 350, 374, 494, 494, 714, 714, 714, 714, 825, 832, 1078, 1078, 1078, 1078, 1425, 1440, 1440, 1856, 2175, 2175, 2175, 2175, 2175, 2175, 2175, 2870, 2870, 2870, 2871, 2880, 2880, 2880, 3219
Offset: 3

Views

Author

Onno M. Cain, Sep 06 2019

Keywords

Comments

Each term is only conjectured and has been verified up to 10^6.
Note a(2) is undefined if there are infinitely many Mersenne primes.

Examples

			For example, a(3) = 16 because 16 * 17 * 18 = 2^5 * 3^2 * 17 admits only three prime divisors (2, 3, and 17) and appears to be the largest product of three consecutive integers with the property.
		

Crossrefs

Programs

  • SageMath
    for r in range(3, 100):
      history = []
      M = 0
      for n in range(1, 100000):
        primes = {p for p, _ in factor(n)}
        history.append(primes)
        history = history[-r:]
        total = set()
        for s in history: total |= s
        # Skip if too many primes.
        if len(total) > r: continue
        if n > M: M = n
      print(r, M-r+1)
Showing 1-5 of 5 results.