A265609 Array read by ascending antidiagonals: A(n,k) the rising factorial, also known as Pochhammer symbol, for n >= 0 and k >= 0.
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 6, 0, 1, 4, 12, 24, 24, 0, 1, 5, 20, 60, 120, 120, 0, 1, 6, 30, 120, 360, 720, 720, 0, 1, 7, 42, 210, 840, 2520, 5040, 5040, 0, 1, 8, 56, 336, 1680, 6720, 20160, 40320, 40320, 0
Offset: 0
Examples
Square array A(n,k) [where n=row, k=column] is read by ascending antidiagonals as: A(0,0), A(1,0), A(0,1), A(2,0), A(1,1), A(0,2), A(3,0), A(2,1), A(1,2), A(0,3), ... Array starts: n\k [0 1 2 3 4 5 6 7 8] -------------------------------------------------------------- [0] [1, 0, 0, 0, 0, 0, 0, 0, 0] [1] [1, 1, 2, 6, 24, 120, 720, 5040, 40320] [2] [1, 2, 6, 24, 120, 720, 5040, 40320, 362880] [3] [1, 3, 12, 60, 360, 2520, 20160, 181440, 1814400] [4] [1, 4, 20, 120, 840, 6720, 60480, 604800, 6652800] [5] [1, 5, 30, 210, 1680, 15120, 151200, 1663200, 19958400] [6] [1, 6, 42, 336, 3024, 30240, 332640, 3991680, 51891840] [7] [1, 7, 56, 504, 5040, 55440, 665280, 8648640, 121080960] [8] [1, 8, 72, 720, 7920, 95040, 1235520, 17297280, 259459200] . Seen as a triangle, T(n, k) = Pochhammer(n - k, k), the first few rows are: [0] 1; [1] 1, 0; [2] 1, 1, 0; [3] 1, 2, 2, 0; [4] 1, 3, 6, 6, 0; [5] 1, 4, 12, 24, 24, 0; [6] 1, 5, 20, 60, 120, 120, 0; [7] 1, 6, 30, 120, 360, 720, 720, 0; [8] 1, 7, 42, 210, 840, 2520, 5040, 5040, 0; [9] 1, 8, 56, 336, 1680, 6720, 20160, 40320, 40320, 0.
References
- Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, Addison-Wesley, 1994.
- H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 355.
Links
- NIST Digital Library of Mathematical Functions, Pochhammer's Symbol
- Index entries for sequences related to factorial numbers
Crossrefs
Triangle giving terms only up to column k=n: A124320.
Column 0: A000012, column 1: A001477, column 2: A002378, columns 3-7: A007531, A052762, A052787, A053625, A159083 (shifted 2 .. 6 terms left respectively, i.e. without the extra initial zeros), column 8: A239035.
Row sums of the triangle: A000522.
A(n, n) = A000407(n-1) for n>0.
2^n*A(1/2,n) = A001147(n).
Programs
-
Maple
for n from 0 to 8 do seq(pochhammer(n,k), k=0..8) od;
-
Mathematica
Table[Pochhammer[n, k], {n, 0, 8}, {k, 0, 8}]
-
Sage
for n in (0..8): print([rising_factorial(n,k) for k in (0..8)])
-
Scheme
(define (A265609 n) (A265609bi (A025581 n) (A002262 n))) (define (A265609bi row col) (if (zero? col) 1 (* (+ row col -1) (A265609bi row (- col 1))))) ;; Antti Karttunen, Dec 19 2015
Formula
A(n,k) = Gamma(n+k)/Gamma(n) for n > 0 and n^k for n=0.
A(n,k) = Sum_{j=0..k} n^j*S1(k,j), S1(n,k) the Stirling cycle numbers A132393(n,k).
A(n,k) = (k-1)!/(Sum_{j=0..k-1} (-1)^j*binomial(k-1, j)/(j+n)) for n >= 1, k >= 1.
A(n,k) = (n+k-1)*A(n,k-1) for k >= 1, A(n,0) = 1. - Antti Karttunen, Dec 19 2015
E.g.f. for row k: 1/(1-x)^k. - Geoffrey Critzer, Dec 24 2018
A(n, k) = FallingFactorial(n + k - 1, k). - Peter Luschny, Mar 22 2022
G.f. for row n as a continued fraction of Stieltjes type: 1/(1 - n*x/(1 - x/(1 - (n+1)*x/(1 - 2*x/(1 - (n+2)*x/(1 - 3*x/(1 - ... ))))))). See Wall, Chapter XVIII, equation 92.5. Cf. A226513. - Peter Bala, Aug 27 2023
Comments