cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239057 Sum of the parts in the partitions of 4n into 4 parts with smallest part equal to 1 minus the number of these partitions.

Original entry on oeis.org

3, 28, 110, 285, 570, 1012, 1647, 2480, 3570, 4953, 6622, 8648, 11067, 13860, 17110, 20853, 25058, 29820, 35175, 41080, 47642, 54897, 62790, 71440, 80883, 91052, 102078, 113997, 126730, 140420, 155103, 170688, 187330, 205065, 223790, 243672, 264747, 286900
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 09 2014

Keywords

Examples

			For a(n) add the numbers in the first 3 columns.
                                               13 + 1 + 1 + 1
                                               12 + 2 + 1 + 1
                                               11 + 3 + 1 + 1
                                               10 + 4 + 1 + 1
                                                9 + 5 + 1 + 1
                                                8 + 6 + 1 + 1
                                                7 + 7 + 1 + 1
                                               11 + 2 + 2 + 1
                                               10 + 3 + 2 + 1
                               9 + 1 + 1 + 1    9 + 4 + 2 + 1
                               8 + 2 + 1 + 1    8 + 5 + 2 + 1
                               7 + 3 + 1 + 1    7 + 6 + 2 + 1
                               6 + 4 + 1 + 1    9 + 3 + 3 + 1
                               5 + 5 + 1 + 1    8 + 4 + 3 + 1
                               7 + 2 + 2 + 1    7 + 5 + 3 + 1
               5 + 1 + 1 + 1   6 + 3 + 2 + 1    6 + 6 + 3 + 1
               4 + 2 + 1 + 1   5 + 4 + 2 + 1    7 + 4 + 4 + 1
               3 + 3 + 1 + 1   5 + 3 + 3 + 1    6 + 5 + 4 + 1
1 + 1 + 1 + 1  3 + 2 + 2 + 1   4 + 4 + 3 + 1    5 + 5 + 5 + 1
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     3               28            110             285        ..   a(n)
		

Crossrefs

Programs

  • Mathematica
    b[n_] := (4 n - 1) Sum[((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i) + (i + 2) (Floor[(4 n - 2 - i)/2] - i)) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]/(4 n); Table[b[n], {n, 50}]
    CoefficientList[Series[(2 x^2 + x + 3) (5 x^4 + 19 x^3 + 16 x^2 + 7 x + 1)/((x^2 + x + 1)^2 (x - 1)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 13 2014 *)

Formula

a(n) = A239056(n) - A238705(n).
G.f.: x*(2*x^2+x+3)*(5*x^4+19*x^3+16*x^2+7*x+1)/((x^2+x+1)^2*(x-1)^4). - Alois P. Heinz, Mar 11 2014
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - 4*a(n-4) + 2*a(n-5) - a(n-6) + 2*a(n-7) - a(n-8). - Wesley Ivan Hurt, Jun 22 2024