cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A239140 Number of strict partitions of n having standard deviation σ < 1.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1
Offset: 1

Views

Author

Clark Kimberling, Mar 11 2014

Keywords

Comments

Regarding standard deviation, see Comments at A238616.

Examples

			The standard deviations of the strict partitions of 9 are 0., 3.5, 2.5, 1.5, 2.16025, 0.5, 1.63299, 0.816497, so that a(9) = 3.
		

Crossrefs

Programs

  • Mathematica
    z = 30; g[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, Length[t]}]/Length[t]]
    Table[Count[g[n], p_ /; s[p] < 1], {n, z}]   (* A239140 *)
    Table[Count[g[n], p_ /; s[p] <= 1], {n, z}]  (* A239141 *)
    Table[Count[g[n], p_ /; s[p] == 1], {n, z}]  (* periodic 01 *)
    Table[Count[g[n], p_ /; s[p] > 1], {n, z}]   (* A239142 *)
    Table[Count[g[n], p_ /; s[p] >= 1], {n, z}]  (* A239143 *)
    t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsQ[n]}]]
    ListPlot[Sort[t[30]]] (*plot of st.dev's of strict partitions of 30*)
    (* Peter J. C. Moses, Mar 03 2014 *)
    Join[{1, 1, 2},LinearRecurrence[{-1, 0, 1, 1},{1, 2, 2, 2},83]] (* Ray Chandler, Aug 25 2015 *)
  • PARI
    A083039(n) = (1+!(n%2)+!(n%3));
    A239140(n) = if(n<=3,1+(3==n),A083039(n-3)); \\ Antti Karttunen, May 24 2021

Formula

a(n + 3) = A083039(n) for n >= 1 (periodic with period 6); a(n) + A239143(n) = A000009(n) for n >=1.
G.f.: -(x^6+x^5+x^4+2*x^3+3*x^2+2*x+1)*x / ((x-1)*(x+1)*(x^2+x+1)). - Alois P. Heinz, Mar 14 2014

Extensions

A-number in the first formula corrected by Antti Karttunen, May 24 2021

A239142 Number of strict partitions of n having standard deviation sigma > 1.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 3, 4, 5, 8, 10, 12, 16, 20, 24, 30, 36, 43, 52, 62, 73, 87, 102, 119, 140, 163, 189, 220, 254, 293, 338, 388, 445, 510, 583, 665, 758, 862, 979, 1111, 1258, 1423, 1608, 1814, 2045, 2302, 2588, 2907, 3262, 3656, 4094, 4580, 5118, 5715, 6376
Offset: 1

Views

Author

Clark Kimberling, Mar 11 2014

Keywords

Comments

Regarding standard deviation, see Comments at A238616.

Examples

			The standard deviations of the strict partitions of 9 are 0., 3.5, 2.5, 1.5, 2.16025, 0.5, 1.63299, 0.816497, so that a(9) = 5.
		

Crossrefs

Programs

  • Mathematica
    z = 30; g[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, Length[t]}]/Length[t]]
    Table[Count[g[n], p_ /; s[p] < 1], {n, z}]   (* A239140 *)
    Table[Count[g[n], p_ /; s[p] <= 1], {n, z}]  (* A239141 *)
    Table[Count[g[n], p_ /; s[p] == 1], {n, z}]  (* periodic 01 *)
    Table[Count[g[n], p_ /; s[p] > 1], {n, z}]   (* A239142 *)
    Table[Count[g[n], p_ /; s[p] >= 1], {n, z}]  (* A239143 *)
    t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsQ[n]}]]
    ListPlot[Sort[t[30]]] (*plot of st.dev's of strict partitions of 30*)
    (* Peter J. C. Moses, Mar 03 2014 *)

Formula

a(n) + A239141(n) = A000009(n) for n >=1.
G.f.: Product_{m>=1} (1+x^m) -1 +(x^5+x^4+x^3+2*x^2+x+1)*x / ((x-1)*(x^2+x+1)). - Alois P. Heinz, Mar 14 2014

A239143 Number of strict partitions of n having standard deviation σ >= 1.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 5, 5, 9, 10, 13, 16, 21, 24, 31, 36, 44, 52, 63, 73, 88, 102, 120, 140, 164, 189, 221, 254, 294, 338, 389, 445, 511, 583, 666, 758, 863, 979, 1112, 1258, 1424, 1608, 1815, 2045, 2303, 2588, 2908, 3262, 3657, 4094, 4581, 5118, 5716, 6376
Offset: 1

Views

Author

Clark Kimberling, Mar 11 2014

Keywords

Comments

Regarding standard deviation, see Comments at A238616.

Examples

			The standard deviations of the strict partitions of 9 are 0., 3.5, 2.5, 1.5, 2.16025, 0.5, 1.63299, 0.816497, so that a(9) = 5.
		

Crossrefs

Programs

  • Mathematica
    z = 30; g[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, Length[t]}]/Length[t]]
    Table[Count[g[n], p_ /; s[p] < 1], {n, z}]   (* A239140 *)
    Table[Count[g[n], p_ /; s[p] <= 1], {n, z}]  (* A239141 *)
    Table[Count[g[n], p_ /; s[p] == 1], {n, z}]  (* periodic 01 *)
    Table[Count[g[n], p_ /; s[p] > 1], {n, z}]   (* A239142 *)
    Table[Count[g[n], p_ /; s[p] >= 1], {n, z}]  (* A239143 *)
    t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsQ[n]}]]
    ListPlot[Sort[t[30]]] (*plot of st.dev's of strict partitions of 30*)
    (* Peter J. C. Moses, Mar 03 2014 *)

Formula

a(n) + A239140(n) = A000009(n) for n >=1.
G.f.: Product_{m>=1} (1+x^m) -1 +(x^6+x^5+x^4+2*x^3+3*x^2+2*x+1)*x / ((x-1)*(x+1)*(x^2+x+1)). - Alois P. Heinz, Mar 14 2014
Showing 1-3 of 3 results.