A239195 Sum of the next to smallest parts in the partitions of 4n into 4 parts with smallest part = 1.
1, 5, 17, 42, 78, 134, 215, 315, 447, 616, 812, 1052, 1341, 1665, 2045, 2486, 2970, 3522, 4147, 4823, 5579, 6420, 7320, 8312, 9401, 10557, 11817, 13186, 14630, 16190, 17871, 19635, 21527, 23552, 25668, 27924, 30325, 32825, 35477, 38286, 41202, 44282, 47531
Offset: 1
Examples
For a(n) add the numbers in the third columns. 13+ 1 + 1 + 1 12+ 2 + 1 + 1 11+ 3 + 1 + 1 10+ 4 + 1 + 1 9 + 5 + 1 + 1 8 + 6 + 1 + 1 7 + 7 + 1 + 1 11+ 2 + 2 + 1 10+ 3 + 2 + 1 9 + 1 + 1 + 1 9 + 4 + 2 + 1 8 + 2 + 1 + 1 8 + 5 + 2 + 1 7 + 3 + 1 + 1 7 + 6 + 2 + 1 6 + 4 + 1 + 1 9 + 3 + 3 + 1 5 + 5 + 1 + 1 8 + 4 + 3 + 1 7 + 2 + 2 + 1 7 + 5 + 3 + 1 5 + 1 + 1 + 1 6 + 3 + 2 + 1 6 + 6 + 3 + 1 4 + 2 + 1 + 1 5 + 4 + 2 + 1 7 + 4 + 4 + 1 3 + 3 + 1 + 1 5 + 3 + 3 + 1 6 + 5 + 4 + 1 1 + 1 + 1 + 1 3 + 2 + 2 + 1 4 + 4 + 3 + 1 5 + 5 + 5 + 1 4(1) 4(2) 4(3) 4(4) .. 4n ------------------------------------------------------------------------ 1 5 17 42 .. a(n)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for sequences related to partitions
- Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-4,2,-1,2,-1).
Programs
-
Mathematica
b[n_] := Sum[(((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i) + (i + 2) (Floor[(4 n - 2 - i)/2] - i)) - ((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i)) - ((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i) + (i + 2) (Floor[(4 n - 2 - i)/2] - i))/(4 n)) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]; Table[b[n], {n, 50}] LinearRecurrence[{2,-1,2,-4,2,-1,2,-1},{1,5,17,42,78,134,215,315},60] (* Harvey P. Dale, Jul 05 2025 *)
-
PARI
Vec(x*(4*x^5+5*x^4+11*x^3+8*x^2+3*x+1)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Sep 22 2014
Formula
G.f.: x*(4*x^5+5*x^4+11*x^3+8*x^2+3*x+1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, Mar 12 2014
a(n) = 2*a(n-1)-a(n-2)+2*a(n-3)-4*a(n-4)+2*a(n-5)-a(n-6)+2*a(n-7)-a(n-8). - Wesley Ivan Hurt, Jul 08 2025