cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A186826 Riordan array (s(x),x*S(x)) where s(x) is the g.f. of the little Schroeder numbers A001003, and S(x) is the g.f. of the large Schroeder numbers A006318.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 11, 11, 5, 1, 45, 45, 23, 7, 1, 197, 197, 107, 39, 9, 1, 903, 903, 509, 205, 59, 11, 1, 4279, 4279, 2473, 1061, 347, 83, 13, 1, 20793, 20793, 12235, 5483, 1949, 541, 111, 15, 1, 103049, 103049, 61463, 28435, 10717, 3285, 795, 143, 17, 1, 518859, 518859, 312761, 148249, 58351, 19199, 5197, 1117, 179, 19, 1
Offset: 0

Views

Author

Paul Barry, Feb 27 2011

Keywords

Comments

Reverse of A144944. Inverse of A186827.

Examples

			Triangle begins
       1;
       1,      1;
       3,      3,      1;
      11,     11,      5,      1;
      45,     45,     23,      7,     1;
     197,    197,    107,     39,     9,     1;
     903,    903,    509,    205,    59,    11,    1;
    4279,   4279,   2473,   1061,   347,    83,   13,    1;
   20793,  20793,  12235,   5483,  1949,   541,  111,   15,   1;
  103049, 103049,  61463,  28435, 10717,  3285,  795,  143,  17,  1;
  518859, 518859, 312761, 148249, 58351, 19199, 5197, 1117, 179, 19, 1;
Production matrix of this triangle begins
  1, 1;
  2, 2, 1;
  2, 2, 2, 1;
  2, 2, 2, 2, 1;
  2, 2, 2, 2, 2, 1;
  2, 2, 2, 2, 2, 2, 1;
  2, 2, 2, 2, 2, 2, 2, 1;
  2, 2, 2, 2, 2, 2, 2, 2, 1;
  2, 2, 2, 2, 2, 2, 2, 2, 2, 1;
For instance, 107=1*45+2*23+2*7+2*1.
		

Crossrefs

Cf. A001003, A006318, A010683 (row sums), A144944 (row reverse), A186827 (inverse), A186828 (diagonal sums), A239204.

Programs

  • Haskell
    a186826 n k = a186826_tabl !! n !! k
    a186826_row n = a186826_tabl !! n
    a186826_tabl = map reverse a144944_tabl
    -- Reinhard Zumkeller, May 11 2013
    
  • Mathematica
    t[, 0]=1; t[p, p_]:= t[p, p]= t[p, p-1]; t[p_, q_]:= t[p, q]= t[p, q -1] + t[p-1, q] + t[p-1, q-1];
    Table[t[p, q], {p,0,10}, {q,p,0,-1}]//Flatten (* Jean-François Alcover, Jul 16 2019 *)
  • SageMath
    @CachedFunction
    def t(n,k):
        if (k<0 or k>n): return 0
        elif (k==0): return 1
        elif (kA186826(n,k): return t(n+2,n-k)
    flatten([[A186826(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Mar 11 2023

Formula

Riordan array ((1+x+sqrt(1-6*x+x^2))/(4*x), (1-x-sqrt(1-6*x+x^2))/2).
Sum_{k=0..n} T(n,k) = A010683(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A186828(n).
R(n,k) = k*Sum_{i=0..n-k} (A001003(i)/(n-i))*Sum_{m=0..n-k-i} binomial(n-i,m)*binomial(2*(n-i)-m-k-1, n-i-1), k>0, R(n,0) = A001003(n). - Vladimir Kruchinin, Mar 09 2011
Sum_{k=0..n} (-1)^k*T(n, k) = A239204(n-2). - G. C. Greubel, Mar 11 2023

A144944 Super-Catalan triangle (read by rows) = triangular array associated with little Schroeder numbers (read by rows): T(0,0)=1, T(p,q) = T(p,q-1) if 0 < p = q, T(p,q) = T(p,q-1) + T(p-1,q) + T(p-1,q-1) if -1 < p < q and T(p,q) = 0 otherwise.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 5, 11, 11, 1, 7, 23, 45, 45, 1, 9, 39, 107, 197, 197, 1, 11, 59, 205, 509, 903, 903, 1, 13, 83, 347, 1061, 2473, 4279, 4279, 1, 15, 111, 541, 1949, 5483, 12235, 20793, 20793, 1, 17, 143, 795, 3285, 10717, 28435, 61463, 103049, 103049
Offset: 0

Views

Author

Johannes Fischer (Fischer(AT)informatik.uni-tuebingen.de), Sep 26 2008

Keywords

Examples

			First few rows of the triangle:
  1
  1,  1
  1,  3,  3
  1,  5, 11,  11
  1,  7, 23,  45,  45
  1,  9, 39, 107, 197, 197
  1, 11, 59, 205, 509, 903, 903
		

Crossrefs

Super-Catalan numbers or little Schroeder numbers (cf. A001003) appear on the diagonal.
Generalizes the Catalan triangle (A009766) and hence the ballot Numbers.
Cf. A033877 for a similar triangle derived from the large Schroeder numbers (A006318).
Cf. A010683 (row sums), A186826 (rows reversed).

Programs

  • Haskell
    a144944 n k = a144944_tabl !! n !! k
    a144944_row n = a144944_tabl !! n
    a144944_tabl = iterate f [1] where
       f us = vs ++ [last vs] where
         vs = scanl1 (+) $ zipWith (+) us $ [0] ++ us
    -- Reinhard Zumkeller, May 11 2013
    
  • Mathematica
    t[, 0]=1; t[p, p_]:= t[p, p]= t[p, p-1]; t[p_, q_]:= t[p, q]= t[p, q-1] + t[p-1, q] + t[p-1, q-1]; Flatten[Table[ t[p, q], {p,0,6}, {q,0, p}]] (* Jean-François Alcover, Dec 19 2011 *)
  • SageMath
    @CachedFunction
    def t(n,k):
        if (k<0 or k>n): return 0
        elif (k==0): return 1
        elif (kG. C. Greubel, Mar 11 2023

Formula

From G. C. Greubel, Mar 11 2023: (Start)
Sum_{k=0..n} T(n, k) = A010683(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A239204(n-2).
Sum_{k=0..floor(n/2)} T(n-k, k) = A247623(n). (End)

A172094 The Riordan square of the little Schröder numbers A001003.

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 11, 17, 7, 1, 45, 76, 40, 10, 1, 197, 353, 216, 72, 13, 1, 903, 1688, 1145, 458, 113, 16, 1, 4279, 8257, 6039, 2745, 829, 163, 19, 1, 20793, 41128, 31864, 15932, 5558, 1356, 222, 22, 1, 103049, 207905, 168584, 90776, 35318, 10070, 2066, 290, 25, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 25 2010

Keywords

Comments

The Riordan square is defined in A321620.
Previous name was: Triangle, read by rows, given by [1,2,1,2,1,2,1,2,1,2,1,2,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.
Riordan array (f(x), f(x)-1) where f(x) is the g.f. of A001003. Equals A122538*A007318.

Examples

			Triangle begins:
     1
     1,      1
     3,      4,      1
    11,     17,      7,     1
    45,     76,     40,    10,     1
   197,    353,    216,    72,    13,     1
   903,   1688,   1345,   458,   113,    16,    1
  4279,   8257,   6039,  2745,   829,   163,   19,   1
20793,  41128,  31864, 15932,  5558,  1356,  222,  22,  1
103049, 207905, 168584, 90776, 35318, 10070, 2066, 290, 25, 1
.
Production matrix begins:
1, 1
2, 3, 1
0, 2, 3, 1
0, 0, 2, 3, 1
0, 0, 0, 2, 3, 1
0, 0, 0, 0, 2, 3, 1
0, 0, 0, 0, 0, 2, 3, 1
0, 0, 0, 0, 0, 0, 2, 3, 1
... - _Philippe Deléham_, Sep 24 2014
		

Crossrefs

T(n, 0) = A001003(n) (little Schröder), A109980 (row sums).
Diagonals: A239204, A000012, A016777.

Programs

  • Maple
    T := (n, k) -> local j; add((binomial(n-1, j)*binomial(n+1, k+j+1) - binomial(n, j)*binomial(n, k+j+1))*2^j, j = 0..n-k):
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Jan 24 2025
  • Mathematica
    DELTA[r_, s_, m_] := Module[{p, q, t, x, y}, q[k_] := x r[[k+1]] + y s[[k+1]]; p[0, ] = 1; p[, -1] = 0; p[n_ /; n >= 1, k_ /; k >= 0] := p[n, k] = p[n, k-1] + q[k] p[n-1, k+1] // Expand; t[n_, k_] := Coefficient[p[n, 0], x^(n-k)*y^k]; t[0, 0] = p[0, 0]; Table[t[n, k], {n, 0, m}, {k, 0, n}]];
    nmax = 9;
    DELTA[Table[{1, 2}, (nmax+1)/2] // Flatten, Prepend[Table[0, {nmax}], 1], nmax] // Flatten (* Jean-François Alcover, Aug 07 2018 *)
    (* Function RiordanSquare defined in A321620. *)
    RiordanSquare[(1 + x - Sqrt[1 - 6x + x^2])/(4x), 11] // Flatten  (* Peter Luschny, Nov 27 2018 *)

Formula

T(0, 0) = 1, T(n, k) = 0 if k>n, T(n, 0) = T(n-1, 0) + 2*T(n-1, 1), T(n, k) = T(n-1, k-1) + 3*T(n-1, k) + 2*T(n-1, k+1) for k>0.
Sum_{0<=k<=n} T(n, k) = A109980(n).
Sum_{k>=0} T(m, k)*T(n, k)*2^k = T(m+n, 0) = A001003(m+n).
T(n, k) = Sum_{j=0..n-k} (binomial(n-1, j)*binomial(n+1, k+j+1) - binomial(n, j)*binomial(n, k+j+1))*2^j. (Cigler) - Peter Luschny, Jan 24 2025

Extensions

New name by Peter Luschny, Nov 27 2018
Showing 1-3 of 3 results.