A239273 Number of domicule tilings of a 2n X 2n square grid.
1, 3, 280, 3037561, 3263262629905, 326207195516663381931, 3011882198082438957330143630563, 2565014347691062208319404612723752103028288, 201442620359313683494245316355883565275531844406384955392, 1458834332808489549111708247664894524221330758005874053074138540424018259
Offset: 0
Keywords
Examples
a(1) = 3: +---+ +---+ +---+ |o o| |o o| |o-o| || || | X | | | |o o| |o o| |o-o| +---+ +---+ +---+. a(2) = 280: +-------+ +-------+ +-------+ +-------+ +-------+ |o o o-o| |o o o-o| |o-o o-o| |o o o o| |o o-o o| | X | | X | | | | X | || | \ / | |o o o o| |o o o o| |o o o o| |o o o o| |o o o o| | / || | / / | || X || | | || || |o o o o| |o o o o| |o o o o| |o-o o o| |o o o o| || \ | || || | | | X | | / / | |o o-o o| |o o-o o| |o-o o-o| |o-o o o| |o o o-o| +-------+ +-------+ +-------+ +-------+ +-------+ ...
Links
- Eric Weisstein's World of Mathematics, King Graph
- Wikipedia, King's graph
Programs
-
Mathematica
b[n_, l_List] := b[n, l] = Module[{d = Length[l]/2, f = False, k}, Which[n == 0, 1, l[[1 ;; d]] == Array[f &, d], b[n - 1, Join[l[[d + 1 ;; 2*d]], Array[True &, d]]], True, For[k = 1, ! l[[k]], k++]; If[k < d && n > 1 && l[[k + d + 1]], b[n, ReplacePart[l, {k -> f, k + d + 1 -> f}]], 0] + If[k > 1 && n > 1 && l[[k + d - 1]], b[n, ReplacePart[l, {k -> f, k + d - 1 -> f}]], 0] + If[n > 1 && l[[k + d]], b[n, ReplacePart[l, {k -> f, k + d -> f}]], 0] + If[k < d && l[[k + 1]], b[n, ReplacePart[l, {k -> f, k + 1 -> f}]], 0]]]; A[n_, k_] := If[Mod[n*k, 2]>0, 0, If[k>n, A[k, n], b[n, Array[True&, k*2]]]]; a[n_] := A[2n, 2n]; Table[Print[n]; a[n], {n, 0, 7}] (* Jean-François Alcover, Sep 16 2019, after Alois P. Heinz in A239264 *)
Formula
a(n) = A239264(2n,2n).
Extensions
a(8) from Alois P. Heinz, Sep 30 2014
a(9) from Alois P. Heinz, Nov 23 2018
Comments