A239275 a(n) = numerator(2^n * Bernoulli(n, 1)).
1, 1, 2, 0, -8, 0, 32, 0, -128, 0, 2560, 0, -1415168, 0, 57344, 0, -118521856, 0, 5749735424, 0, -91546451968, 0, 1792043646976, 0, -1982765704675328, 0, 286994513002496, 0, -3187598700536922112, 0, 4625594563496048066560, 0, -16555640873195841519616, 0, 22142170101965089931264, 0
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli Numbers, arXiv:math/1707.04451 [math.NT], July 2017. See B(2;n), eq. (53).
Programs
-
Maple
seq(numer(2^n*bernoulli(n, 1)), n=0..35); # Peter Luschny, Jul 17 2017
-
Mathematica
Table[Numerator[2^n*BernoulliB[n, 1]], {n, 0, 100}] (* Indranil Ghosh, Jul 18 2017 *)
-
Python
from sympy import bernoulli def a(n): return (2**n * bernoulli(n, 1)).numerator print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 18 2017
Comments