A239285 a(n) = (15^n - (-2)^n)/17.
0, 1, 13, 199, 2977, 44671, 670033, 10050559, 150758257, 2261374111, 33920611153, 508809168319, 7632137522737, 114482062845151, 1717230942669073, 25758464140052479, 386376962100754417, 5795654431511381791, 86934816472670595793, 1304022247090059199039
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..849
- Index entries for linear recurrences with constant coefficients, signature (13,30).
Programs
-
Magma
[(15^n -(-2)^n)/17: n in [0..30]]; // G. C. Greubel, May 26 2018
-
Mathematica
CoefficientList[Series[x/(1-13*x-30*x^2), {x,0,50}], x] (* or *) Table[ (15^n - (-2)^n)/17, {n,0,30}] (* or *) LinearRecurrence[{13,30}, {0,1}, 30] (* G. C. Greubel, May 26 2018 *)
-
PARI
a(n) = (15^n-(-2)^n)/17; \\ Michel Marcus, Mar 16 2014
-
PARI
x='x+O('x^30); concat([0], Vec()) \\ G. C. Greubel, May 26 2018
Formula
G.f.: x/(1 - 13*x - 30*x^2).
a(n) = 13*a(n-1) + 30*a(n-2) for n >= 2, a(0)=0, a(1)=1.
E.g.f.: (exp(15*x) - exp(-2*x))/17. - G. C. Greubel, May 26 2018
Comments