cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239295 Number of words of length n over the alphabet {0,...,n-1} that avoid the pattern 123.

Original entry on oeis.org

1, 1, 4, 26, 210, 1897, 18368, 186636, 1965414, 21277685, 235493544, 2653779856, 30357956720, 351719984280, 4119552129280, 48708104589368, 580682799531822, 6973356315752445, 84286657672243880, 1024694111031383100, 12522664914160322460, 153762682439070435390
Offset: 0

Views

Author

Chad Brewbaker, Mar 14 2014

Keywords

Examples

			a(0) = [].
a(1) = [0].
a(2) = [0,0], [0,1], [1,0], [1,1].
a(3) = [0,0,0], [0,0,1], [0,0,2], [0,1,0], [0,1,1], [0,2,0], [0,2,1], [0,2,2], [1,0,0], [1,0,1], [1,0,2], [1,1,0], [1,1,1], [1,1,2], [1,2,0], [1,2,1], [1,2,2], [2,0,0], [2,0,1], [2,0,2], [2,1,0], [2,1,1], [2,1,2], [2,2,0], [2,2,1], [2,2,2].
		

Crossrefs

Cf. A000108 (the permutation analog for 123-avoiding), A000312, A245667.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 1, 4][n+1],
          ((7324*n^4-36350*n^3+58408*n^2-36126*n+8352) *a(n-1)
          -3*(n-3)*(2083*n^3-5374*n^2+2979*n+816) *a(n-2)
          -63*(n-3)*(n-4)*(3*n-7)*(3*n-8) *a(n-3)) /
          (4*n*(n-2)*(n+1)*(127*n-261)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Mar 15 2014
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, 1, Sum[b[n-1, Table[Min[l[[j]], If[j == 1 || l[[j-1]] < i, i, l[[j]]]], {j, 1, Length[l]}]], {i, 1, l[[-1]]}]];
    A[n_, k_] := A[n, k] = If[k == 0, If[n == 0, 1, 0], b[n, Array[n&, k]]];
    T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k-1]];
    a[n_] := Sum[T[n, k], {k, 0, 2}];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 29 2017, after Alois P. Heinz (cf. A245667) *)

Formula

a(n) = Sum_{k=0..2} A245667(n,k).
a(n) ~ 3^(3*n-1/2) / (5^(3/2) * Pi * 2^(n-3) * n^2). - Vaclav Kotesovec, Sep 11 2014

Extensions

a(8)-a(11) from Giovanni Resta, Mar 14 2014
a(12)-a(21) from Alois P. Heinz, Mar 15 2014