cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239327 Number of palindromic Carlitz compositions of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 5, 5, 7, 10, 14, 14, 25, 26, 42, 48, 75, 79, 132, 142, 226, 252, 399, 432, 704, 760, 1223, 1336, 2143, 2328, 3759, 4079, 6564, 7150, 11495, 12496, 20135, 21874, 35215, 38310, 61639, 67018, 107912, 117298, 188839, 205346, 330515, 359350, 578525, 628951
Offset: 0

Views

Author

Geoffrey Critzer, Mar 16 2014

Keywords

Comments

A palindromic composition is a composition that is identical to its own reverse. There are 2^floor(n/2) palindromic compositions. A Carlitz composition has no two consecutive equal parts (A003242). This sequence enumerates compositions that are both palindromic and Carlitz.
Also the number of odd-length integer compositions of n into parts that are alternately unequal and equal (n > 0). The unordered version (partitions) is A053251. - Gus Wiseman, Feb 26 2022

Examples

			a(9) = 7 because we have: 9, 1+7+1, 2+5+2, 4+1+4, 1+3+1+3+1, 2+1+3+1+2, 1+2+3+2+1. 2+3+4 is not counted because it is not palindromic. 3+3+3 is not counted because it has consecutive equal parts.
		

References

  • S. Heubach and T. Mansour, Compositions of n with parts in a set, Congr. Numer. 168 (2004), 127-143.
  • S. Heubach and T. Mansour, Combinatorics of Compositions and Words, Chapman and Hall, 2010, page 67.

Crossrefs

Carlitz compositions are counted by A003242.
Palindromic compositions are counted by A016116.
The unimodal case is A096441.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i=0, 0, `if`(n=0, 1,
          add(`if`(i=j, 0, b(n-j, j)), j=1..n)))
        end:
    a:= n-> `if`(n=0, 1, add(b(i, n-2*i), i=0..n/2)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Mar 16 2014
  • Mathematica
    nn=50;CoefficientList[Series[(1+Sum[x^j(1-x^j)/(1+x^(2j)),{j,1,nn}])/(1-Sum[x^(2j)/(1+x^(2j)),{j,1,nn}]),{x,0,nn}],x]
    (* or *)
    Table[Length[Select[Level[Map[Permutations,Partitions[n]],{2}],Apply[And,Table[#[[i]]==#[[Length[#]-i+1]],{i,1,Floor[Length[#]/2]}]]&&Apply[And,Table[#[[i]]!=#[[i+1]],{i,1,Length[#]-1}]]&]],{n,0,20}]
  • PARI
    a(n) = polcoeff((1 + sum(j=1, n, x^j*(1-x^j)/(1+x^(2*j)) + O(x*x^n))) / (1 - sum(j=1, n, x^(2*j)/(1+x^(2*j)) + O(x*x^n))), n); \\ Andrew Howroyd, Oct 12 2017

Formula

G.f.: (1 + Sum_{j>=1} x^j*(1-x^j)/(1+x^(2*j))) / (1 - Sum_{j>=1} x^(2*j)/(1+x^(2*j))).
a(n) ~ c / r^n, where r = 0.7558768372943356987836792261127971643747976345582722756032673... is the root of the equation sum_{j>=1} x^(2*j)/(1+x^(2*j)) = 1, c = 0.5262391407444644722747255167331403939384758635340487280277... if n is even and c = 0.64032989654153238794063877354074732669441634551692765196197... if n is odd. - Vaclav Kotesovec, Aug 22 2014