cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239349 Decimal expansion of prime version of Ramanujan's infinite nested radical.

Original entry on oeis.org

9, 4, 0, 5, 0, 4, 3, 6, 1, 2, 4, 4, 5, 2, 1, 7, 5, 7, 8, 1, 3, 7, 6, 3, 3, 7, 4, 2, 9, 7, 8, 6, 0, 0, 5, 7, 9, 4, 1, 8, 7, 5, 6, 5, 2, 2, 5, 9, 0, 2, 3, 6, 3, 9, 6, 5, 9, 2, 2, 1, 7, 2, 1, 8, 5, 6, 0, 6, 8, 5, 9, 4, 2, 4, 2, 2, 1, 9, 9, 1, 2, 9, 8, 7, 3, 7, 7, 4, 0, 1, 4, 1, 0, 4, 9, 2, 9, 0, 6, 2, 8, 5, 5, 8, 9, 1, 8, 2, 6, 9
Offset: 1

Views

Author

Jonathan Sondow, Mar 16 2014

Keywords

Comments

Replace each factor n = 1, 2, 3, ... with prime(n) = 2, 3, 5, ... in Ramanujan's infinite nested radical 1*sqrt(1 + 2*sqrt(1 + 3*sqrt(1 + ...))) = 3, obtaining 2*sqrt(1 + 3*sqrt(1 + 5*sqrt(1 + ...))) = 9.405043....
Converges by Vijayaraghavan's test or Herschfeld's test, together with the Prime Number Theorem. - Petros Hadjicostas and Jonathan Sondow, Mar 23 2014

Examples

			9.4050436124452175781376337429786005794187565225902363965922...
		

References

  • S. Ramanujan, J. Indian Math. Soc., III (1911), 90 and IV (1912), 226.
  • T. Vijayaraghavan, in Collected Papers of Srinivasa Ramanujan, G. H. Hardy, P. V. Seshu Aiyar and B. M. Wilson, eds., Cambridge Univ. Press, 1927, p. 348; reprinted by Chelsea, 1962.

Crossrefs

Programs

  • Mathematica
    RealDigits[ Fold[ #2*Sqrt[ 1 + #1] &, 0, Reverse[ Prime[ Range[ 400]]]], 10, 110][[1]]

Formula

Equals 2*sqrt(1 + 3*sqrt(1 + 5*sqrt(1 + 7*sqrt(1 + 11*sqrt(1 + ...))))).
Equals lim_{n->oo} 2*sqrt(1 + 3*sqrt(1 + 5*sqrt(1 + ... + prime(n)*sqrt(1)))).
sqrt(4 + sqrt(144 + sqrt(129600 + ...))) = sqrt(A(1) + sqrt(A(2) + sqrt(A(3) + ...))), where A = A239350 = superprimorials squared.