A239349 Decimal expansion of prime version of Ramanujan's infinite nested radical.
9, 4, 0, 5, 0, 4, 3, 6, 1, 2, 4, 4, 5, 2, 1, 7, 5, 7, 8, 1, 3, 7, 6, 3, 3, 7, 4, 2, 9, 7, 8, 6, 0, 0, 5, 7, 9, 4, 1, 8, 7, 5, 6, 5, 2, 2, 5, 9, 0, 2, 3, 6, 3, 9, 6, 5, 9, 2, 2, 1, 7, 2, 1, 8, 5, 6, 0, 6, 8, 5, 9, 4, 2, 4, 2, 2, 1, 9, 9, 1, 2, 9, 8, 7, 3, 7, 7, 4, 0, 1, 4, 1, 0, 4, 9, 2, 9, 0, 6, 2, 8, 5, 5, 8, 9, 1, 8, 2, 6, 9
Offset: 1
Examples
9.4050436124452175781376337429786005794187565225902363965922...
References
- S. Ramanujan, J. Indian Math. Soc., III (1911), 90 and IV (1912), 226.
- T. Vijayaraghavan, in Collected Papers of Srinivasa Ramanujan, G. H. Hardy, P. V. Seshu Aiyar and B. M. Wilson, eds., Cambridge Univ. Press, 1927, p. 348; reprinted by Chelsea, 1962.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- A. Herschfeld, On Infinite Radicals, Amer. Math. Monthly, 42 (1935), 419-429.
- Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, J. Math. Anal. Appl., 332 (2007), 292-314; see pp. 305-306.
- Wikipedia, Tirukkannapuram Vijayaraghavan.
Programs
-
Mathematica
RealDigits[ Fold[ #2*Sqrt[ 1 + #1] &, 0, Reverse[ Prime[ Range[ 400]]]], 10, 110][[1]]
Formula
Equals 2*sqrt(1 + 3*sqrt(1 + 5*sqrt(1 + 7*sqrt(1 + 11*sqrt(1 + ...))))).
Equals lim_{n->oo} 2*sqrt(1 + 3*sqrt(1 + 5*sqrt(1 + ... + prime(n)*sqrt(1)))).
sqrt(4 + sqrt(144 + sqrt(129600 + ...))) = sqrt(A(1) + sqrt(A(2) + sqrt(A(3) + ...))), where A = A239350 = superprimorials squared.
Comments