cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A072449 Decimal expansion of the limit of the nested radical sqrt(1 + sqrt(2 + sqrt(3 + sqrt(4 + ... )))).

Original entry on oeis.org

1, 7, 5, 7, 9, 3, 2, 7, 5, 6, 6, 1, 8, 0, 0, 4, 5, 3, 2, 7, 0, 8, 8, 1, 9, 6, 3, 8, 2, 1, 8, 1, 3, 8, 5, 2, 7, 6, 5, 3, 1, 9, 9, 9, 2, 2, 1, 4, 6, 8, 3, 7, 7, 0, 4, 3, 1, 0, 1, 3, 5, 5, 0, 0, 3, 8, 5, 1, 1, 0, 2, 3, 2, 6, 7, 4, 4, 4, 6, 7, 5, 7, 5, 7, 2, 3, 4, 4, 5, 5, 4, 0, 0, 0, 2, 5, 9, 4, 5, 2, 9, 7, 0, 9, 3
Offset: 1

Views

Author

Robert G. Wilson v, Aug 01 2002

Keywords

Comments

Herschfeld calls this the Kasner number, after Edward Kasner. - Charles R Greathouse IV, Dec 30 2008
No closed-form expression is known for this constant.
"It was discovered by T. Vijayaraghavan that the infinite radical sqrt( a_1 + sqrt( a_2 + sqrt ( a_3 + sqrt( a_4 + ...)))), where a_n >= 0, will converge to a limit if and only if the limit of (log a_n)/2^n exists" - Clawson, p. 229. Obviously if a_n = n, the limit of (log a_n) / 2^n as n -> infinity is 0.
The continued fraction is A072450.
Clawson misstates Vijayaraghavan's theorem. Vijayaraghavan proved that for a_n > 0, the infinite radical sqrt(a_1 + sqrt(a_2 + sqrt(a_3 + ...))) converges if and only if limsup (log a_n)/2^n < infinity. (For example, suppose a_n = 1 if n is odd, and a_n = e^2^n if n is even. Then (log a_n)/2^n = 0, 1, 0, 1, 0, 1, ... for n >= 1, so the limit does not exist. However, limsup (log a_n)/2^n = 1 and the infinite radical converges.) - Jonathan Sondow, Mar 25 2014

Examples

			1.757932756618004532708819638218138527653...
		

References

  • Calvin C. Clawson, "Mathematical Mysteries, the beauty and magic of numbers," Perseus Books, Cambridge, Mass., 1996, pages 142 & 229.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.1.
  • David Wells, "The Penguin Dictionary of Curious and Interesting Numbers," Revised Edition, London, England, 1997, page 30.
  • Stephen Wolfram, "A New Kind Of Science," Wolfram Media, 2002, page 915.

Crossrefs

Programs

  • Mathematica
    RealDigits[ Fold[ Sqrt[ #1 + #2] &, 0, Reverse[ Range[100]]], 10, 111][[1]] (* A New Kind Of Science *)
  • PARI
    s=200; for(n=1,199,t=200-n+sqrt(s); s=t);sqrt(s) \\ gives at least 180 correct digits

A105546 Decimal expansion of prime nested radical.

Original entry on oeis.org

2, 1, 0, 3, 5, 9, 7, 4, 9, 6, 3, 3, 9, 8, 9, 7, 2, 6, 2, 6, 1, 9, 9, 3, 9, 6, 4, 9, 6, 8, 5, 3, 2, 5, 4, 4, 4, 0, 4, 2, 1, 6, 2, 2, 8, 8, 2, 4, 0, 0, 1, 3, 8, 7, 2, 9, 8, 6, 8, 7, 2, 8, 4, 5, 6, 3, 8, 8, 5, 1, 7, 0, 8, 4, 8, 3, 7, 3, 6, 2, 3, 2, 1, 8, 4, 6, 6, 9, 7, 4, 7, 6, 3, 3, 5, 5, 2, 1, 9, 4, 4, 9, 4, 0, 9
Offset: 1

Views

Author

Jonathan Vos Post, Apr 12 2005

Keywords

Comments

sqrt(1 + sqrt(2 + sqrt(3 + sqrt(4 + ...)))) = 1.75793275661800...
"It was discovered by T. Vijayaraghavan that the infinite radical, sqrt( a_1 + sqrt( a_2 + sqrt ( a_3 + sqrt( a_4 + ... )))) where a_n >= 0, will converge to a limit if and only if the limit of log(a_n)/2^n exists." [Clawson, 229; cf. A072449].
We know the asymptotic limit of primes and hence that the Prime Nested Radical converges.
Clawson misstates Vijayaraghavan's theorem. Vijayaraghavan proved that for a_n > 0, the infinite radical sqrt(a_1 + sqrt(a_2 + sqrt(a_3 + ...))) converges if and only if limsup (log a_n)/2^n < infinity. (For example, suppose a_n = 1 if n is odd, and a_n = e^2^n if n is even. Then (log a_n)/2^n = 0, 1, 0, 1, 0, 1, ... for n >= 1, so the limit does not exist. However, limsup (log a_n)/2^n = 1 and the infinite radical converges.) - Jonathan Sondow, Mar 25 2014

Examples

			2.10359749633989726261993964968532544404216228824001387298687284563...
		

References

  • Calvin C. Clawson, "Mathematical Mysteries, the beauty and magic of numbers," Perseus Books, Cambridge, Mass., 1996, pages 142 and 229.
  • S. R. Finch, Analysis of a Radical Expansion, Section 1.2.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, p. 8, 2003.

Crossrefs

A105548 is the continued fraction representation of this prime nested radical.
A105815 is the similar semiprime nested radical.
A105817 is the Fibonacci nested radical.

Programs

  • Mathematica
    RealDigits[Fold[Sqrt[#1 + #2] &, 0, Reverse[Prime[Range[ 80]]]], 10, 111][[1]] (* Robert G. Wilson v, May 31 2005 *)

Formula

sqrt(2 + sqrt(3 + sqrt(5 + sqrt(7 + sqrt(11 + ... + sqrt(prime(n) + ...)))).

Extensions

Crossrefs corrected by Jaroslav Krizek, Jan 03 2015

A191555 a(n) = Product_{k=1..n} prime(k)^(2^(n-k)).

Original entry on oeis.org

1, 2, 12, 720, 3628800, 144850083840000, 272760108249915378892800000000, 1264767303092594444142256488682840323816161280000000000000000
Offset: 0

Views

Author

Rick L. Shepherd, Jun 06 2011

Keywords

Comments

x^(2^n) - a(n) is the minimal polynomial over Q for the algebraic number sqrt(p(1)*sqrt(p(2)*...*sqrt(p(n-1)*sqrt(p(n)))...)), where p(k) is the k-th prime. Each such monic polynomial is irreducible by Eisenstein's Criterion (using p = p(n)).
A prime version of Somos's quadratic recurrence sequence A052129(n) = A052129(n-1)^2 * n = Product_{k=1..n} k^(2^(n-k)). - Jonathan Sondow, Mar 29 2014
All positive integers have unique factorizations into powers of distinct primes, and into powers of squarefree numbers with distinct exponents that are powers of 2. (See A329332 for a description of the relationship between the two.) a(n) is the least number such that both factorizations have n factors. - Peter Munn, Dec 15 2019
From Peter Munn, Jan 24 2020 to Feb 06 2020: (Start)
For n >= 0, a(n+1) is the n-th power of 12 in the monoid defined by A306697.
a(n) is the least positive integer that cannot be expressed as the product of fewer than n terms of A072774 (powers of squarefree numbers).
All terms that are less than the order of the Monster simple group (A003131) are divisors of the group's order, with a(6) exceeding its square root.
(End)
It is remarkable that 4 of the first 5 terms are factorials. - Hal M. Switkay, Jan 21 2025

Examples

			a(1) = 2^1 = 2 and x^2 - 2 is the minimal polynomial for the algebraic number sqrt(2).
a(4) = 2^8*3^4*5^2*7^1 = 3628800 and x^16 - 3628800 is the minimal polynomial for the algebraic number sqrt(2*sqrt(3*sqrt(5*sqrt(7)))).
		

Crossrefs

Sequences with related definitions: A006939, A052129, A191554, A239350 (and thence A239349), A252738, A266639.
A000290, A003961, A059896, A306697 are used to express relationship between terms of this sequence.
Subsequence of A025487, A138302, A225547, A267117 (apart from a(1) = 2), A268375, A331593.
Antidiagonal products of A329050.

Programs

  • Magma
    [n le 1 select 2 else Self(n-1)^2*NthPrime(n): n in [1..10]]; // Vincenzo Librandi, Feb 06 2016
  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 1, a(n-1)^2*ithprime(n))
        end:
    seq(a(n), n=0..8);  # Alois P. Heinz, Mar 05 2020
  • Mathematica
    RecurrenceTable[{a[1] == 2, a[n] == a[n-1]^2 Prime[n]}, a, {n, 10}] (* Vincenzo Librandi, Feb 06 2016 *)
    Table[Product[Prime[k]^2^(n-k),{k,n}],{n,0,10}] (* or *) nxt[{n_,a_}]:={n+1,a^2 Prime[n+1]}; NestList[nxt,{0,1},10][[All,2]] (* Harvey P. Dale, Jan 07 2022 *)
  • PARI
    a(n) = prod(k=1, n, prime(k)^(2^(n-k)))
    
  • Scheme
    ;; Two variants, both with memoization-macro definec.
    (definec (A191555 n) (if (= 1 n) 2 (* (A000040 n) (A000290 (A191555 (- n 1)))))) ;; After the original recurrence.
    (definec (A191555 n) (if (= 1 n) 2 (* (A000079 (A000079 (- n 1))) (A003961 (A191555 (- n 1)))))) ;; After the alternative recurrence - Antti Karttunen, Feb 06 2016
    

Formula

For n > 0, a(n) = a(n-1)^2 * prime(n); a(0) = 1. [edited to extend to a(0) by Peter Munn, Feb 13 2020]
a(0) = 1; for n > 0, a(n) = 2^(2^(n-1)) * A003961(a(n-1)). - Antti Karttunen, Feb 06 2016, edited Feb 13 2020 because of the new prepended starting term.
For n > 1, a(n) = A306697(a(n-1),12) = A059896(a(n-1)^2, A003961(a(n-1))). - Peter Munn, Jan 24 2020

Extensions

a(0) added by Peter Munn, Feb 13 2020

A105817 Decimal expansion of the Fibonacci nested radical.

Original entry on oeis.org

1, 6, 6, 1, 9, 8, 2, 4, 6, 2, 3, 2, 7, 8, 1, 1, 5, 5, 7, 9, 6, 7, 6, 0, 6, 0, 8, 1, 8, 1, 5, 1, 3, 1, 2, 9, 5, 0, 5, 6, 1, 6, 7, 5, 6, 2, 4, 6, 5, 0, 3, 5, 0, 0, 8, 2, 9, 9, 0, 6, 8, 0, 6, 7, 4, 3, 0, 6, 2, 9, 7, 2, 3, 5, 9, 8, 9, 5, 7, 3, 8, 1, 0, 8, 1, 7, 1, 6, 7, 0, 4, 1, 1, 0, 8, 4, 9, 2, 6, 6, 6, 9, 2, 2, 5
Offset: 1

Views

Author

Jonathan Vos Post, Apr 21 2005

Keywords

Comments

The continued fraction expression of this is A105818. "It was discovered by T. Vijayaraghavan that the infinite radical, sqrt( a_1 + sqrt( a_2 + sqrt ( a_3 + sqrt( a_4 + ... where a_n => 0, will converge to a limit if and only if the limit of (ln a_n)/2^n exists." [Clawson, 229; Sloane]. We know the asymptotic limit of Fibonacci numbers is Phi^n (Binet expansion) and that Phi^n < 2^n and hence that the Fibonacci Nested Radical converges.
Clawson misstates Vijayaraghavan's theorem. Vijayaraghavan proved that for a_n > 0, the infinite radical sqrt(a_1 + sqrt(a_2 + sqrt(a_3 + ...))) converges if and only if limsup (log a_n)/2^n < infinity. (For example, suppose a_n = 1 if n is odd, and a_n = e^2^n if n is even. Then (log a_n)/2^n = 0, 1, 0, 1, 0, 1, ... for n >= 1, so the limit does not exist. However, limsup (log a_n)/2^n = 1 and the infinite radical converges.) - Jonathan Sondow, Mar 25 2014

Examples

			1.66198246232781155796760608181513129505616756246503500829906806743...
		

References

  • Calvin C. Clawson, "Mathematical Mysteries, the beauty and magic of numbers," Perseus Books, Cambridge, Mass., 1996, pages 142 & 229.
  • S. R. Finch, "Analysis of a Radical Expansion." Section 1.2.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, p. 8, 2003.

Crossrefs

Programs

  • Mathematica
    RealDigits[ Fold[ Sqrt[ #1 + #2] &, 0, Reverse[ Fibonacci[ Range[50]]]], 10, 111][[1]] (* Robert G. Wilson v, Apr 21 2005 *)

Formula

Sqrt(1 + sqrt(1 + sqrt(2 + sqrt(3 + sqrt(5 + ... + sqrt(Fibonacci(n)=A000045)))).

A105815 Decimal expansion of the semiprime nested radical.

Original entry on oeis.org

2, 6, 6, 3, 5, 2, 5, 6, 3, 4, 8, 0, 6, 8, 5, 6, 5, 4, 4, 9, 8, 9, 4, 4, 6, 7, 3, 2, 7, 2, 1, 9, 5, 5, 1, 4, 5, 9, 9, 9, 2, 2, 9, 8, 2, 6, 8, 9, 2, 7, 2, 9, 3, 2, 9, 1, 4, 8, 3, 3, 7, 0, 5, 8, 6, 8, 0, 2, 3, 8, 8, 4, 8, 7, 9, 0, 3, 9, 3, 2, 9, 9, 3, 5, 6, 4, 3, 9, 6, 0, 5, 6, 8, 6, 4, 2, 4, 5, 5, 9, 9, 1, 4, 5, 3
Offset: 1

Views

Author

Jonathan Vos Post, Apr 21 2005

Keywords

Comments

The semiprime nested radical is defined by the infinite recursion: sqrt(4 + sqrt(6 + sqrt(9 + sqrt(10 + sqrt(14 + ... + sqrt(semiprime(n))))). This converges by the criterion of T. Vijayaraghavan that "the infinite radical, sqrt( a_1 + sqrt( a_2 + sqrt ( a_3 + sqrt( a_4 + ... where a_n => 0, will converge to a limit if and only if the limit of (ln a_n)/2^n exists." [Clawson, 229; Sloane A072449]. The continued fraction representation of this constant is A105816.
Clawson misstates Vijayaraghavan's theorem. Vijayaraghavan proved that for a_n > 0, the infinite radical sqrt(a_1 + sqrt(a_2 + sqrt(a_3 + ...))) converges if and only if limsup (log a_n)/2^n < infinity. (For example, suppose a_n = 1 if n is odd, and a_n = e^2^n if n is even. Then (log a_n)/2^n = 0, 1, 0, 1, 0, 1, ... for n >= 1, so the limit does not exist. However, limsup (log a_n)/2^n = 1 and the infinite radical converges.) - Jonathan Sondow, Mar 25 2014

Examples

			2.66352563480685654498944673272195514599922982689272932914833705868...
		

References

  • Calvin C. Clawson, "Mathematical Mysteries, the beauty and magic of numbers," Perseus Books, Cambridge, Mass., 1996, pages 142 & 229.
  • Steven R. Finch, Analysis of a Radical Expansion, Section 1.2.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, 2003, p. 8.

Crossrefs

For other nested radicals, see A072449, A083869, A099874, A099876, A099877, A099878, A099879, A105546, A105548, A105816, A239349.
Cf. A001358.

Programs

  • Mathematica
    fQ[n_] := Plus @@ Flatten[ Table[ #[[2]], {1}] & /@ FactorInteger[n]] == 2; RealDigits[ Fold[ Sqrt[ #1 + #2] &, 0, Reverse[ Select[ Range[260], fQ[ # ] &]]], 10, 111][[1]] (* Robert G. Wilson v, May 31 2005 *)

Formula

Limit_{n -> infinity} sqrt(4 + sqrt(6 + sqrt(9 + sqrt(10 + sqrt(14 + ... + sqrt(semiprime(n))))), where semiprime(n) = A001358(n).

A105548 Continued fraction expansion of prime nested radical A105546.

Original entry on oeis.org

2, 9, 1, 1, 1, 7, 3, 5, 4, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 15, 1, 3, 1, 41, 6, 1, 3, 1, 3, 10, 1, 1, 1, 9, 9, 1, 25, 1, 3, 1, 1, 2, 2, 2, 1, 34, 59, 2, 2, 2, 1, 2, 2, 3, 3, 1, 5, 2, 21, 3, 4, 10, 1, 3, 20, 2, 3, 2, 1, 4, 7, 1, 6, 1, 6, 3, 4, 1, 3, 5, 6, 1, 1, 4, 1, 3, 6, 25, 7, 2, 1, 1, 2, 1, 6, 1, 1, 7, 1, 3, 2
Offset: 0

Views

Author

Jonathan Vos Post, Apr 14 2005

Keywords

Comments

Records are: 9,15,41,59,117,153,599,1663,8212,..., . Robert G. Wilson v: "It would appear superficially that this constant is normal." Sqrt(1 + sqrt(2 + sqrt(3 + sqrt(4 + ... = ~ 1.75793275661800... "It was discovered by T. Vijayaraghavan that the infinite radical, sqrt( a_1 + sqrt( a_2 + sqrt ( a_3 + sqrt( a_4 + ... where a_n => 0, will converge to a limit if and only if the limit of (ln a_n)/2^n exists." [Clawson, 229; A072449] We know the asymptotic limit of primes and hence that the Prime Nested Radical converges.
Clawson misstates Vijayaraghavan's theorem. Vijayaraghavan proved that for a_n > 0, the infinite radical sqrt(a_1 + sqrt(a_2 + sqrt(a_3 + ...))) converges if and only if limsup (log a_n)/2^n < infinity. (For example, suppose a_n = 1 if n is odd, and a_n = e^2^n if n is even. Then (log a_n)/2^n = 0, 1, 0, 1, 0, 1, ... for n >= 1, so the limit does not exist. However, limsup (log a_n)/2^n = 1 and the infinite radical converges.) - Jonathan Sondow, Mar 25 2014

References

  • Calvin C. Clawson, "Mathematical Mysteries, the beauty and magic of numbers," Perseus Books, Cambridge, Mass., 1996, pages 142 & 229.

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = n, s = 0}, While[k > 0, s = Sqrt[s + k]; k-- ]; s]; ContinuedFraction[ f[100], 101]; (* Robert G. Wilson v *)

Formula

Continued fraction expansion of sqrt(2 + sqrt(3 + sqrt(5 + sqrt(7 + sqrt(11 + ... + sqrt(prime(n))))).

Extensions

Offset changed by Andrew Howroyd, Aug 03 2024

A105816 Continued fraction expansion of the semiprime nested radical (A105815).

Original entry on oeis.org

2, 1, 1, 1, 34, 1, 2, 2, 2, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 9, 7, 1, 9, 1, 5, 1, 5, 1, 2, 7, 2, 2, 3, 5, 2, 1, 10, 8, 2, 3, 1, 1, 1, 12, 1, 1, 5, 4, 4, 2, 1, 1, 2, 2, 4, 13, 2, 2, 12, 3, 11, 15, 2, 2, 2, 23, 8, 1, 1, 3, 1, 2, 8, 19, 1, 5, 2, 7, 4, 1, 82, 22, 1, 1, 1, 2, 1, 1, 9, 1, 1, 1, 15, 8, 12, 2, 11, 1, 15
Offset: 0

Views

Author

Jonathan Vos Post, Apr 21 2005

Keywords

Comments

The semiprime nested radical is defined by the infinite recursion: sqrt(4 + sqrt(6 + sqrt(9 + sqrt(10 + sqrt(14 + ... + sqrt(semiprime(n))))). This converges by the criterion of T. Vijayaraghavan that "the infinite radical, sqrt( a_1 + sqrt( a_2 + sqrt ( a_3 + sqrt( a_4 + ... where a_n => 0, will converge to a limit if and only if the limit of (ln a_n)/2^n exists." [Clawson, 229; Sloane A072449].
Clawson misstates Vijayaraghavan's theorem. Vijayaraghavan proved that for a_n > 0, the infinite radical sqrt(a_1 + sqrt(a_2 + sqrt(a_3 + ...))) converges if and only if limsup (log a_n)/2^n < infinity. (For example, suppose a_n = 1 if n is odd, and a_n = e^2^n if n is even. Then (log a_n)/2^n = 0, 1, 0, 1, 0, 1, ... for n >= 1, so the limit does not exist. However, limsup (log a_n)/2^n = 1 and the infinite radical converges.) - Jonathan Sondow, Mar 25 2014

Examples

			2.66352563480685654498944673272195514599922982689272932914833705868...
		

References

  • Calvin C. Clawson, "Mathematical Mysteries, the beauty and magic of numbers," Perseus Books, Cambridge, Mass., 1996, pages 142 and 229.
  • S. R. Finch, Analysis of a Radical Expansion, Section 1.2.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, p. 8, 2003.

Crossrefs

From Robert G. Wilson v: (Start)
Cf. A072449, Decimal expansion of limit of a nested radical, sqrt(1 + sqrt(2 + sqrt(3 + sqrt(4 + ...
Cf. A083869, a(1)=1 then a(n) is the least k>=1 such that the nested radical sqrt(a(1)^2+sqrt(a(2)^2+sqrt(a(3)^2+(....+sqrt(a(n)^2)))...) is an integer.
Cf. A099874, Decimal expansion of a nested radical: cubeRoot(1 + cubeRoot(2 + cubeRoot(3 + cubeRoot(4 + ...
Cf. A099876, Decimal expansion of a nested radical: sqrt(1! + sqrt(2! + sqrt(3! + ...
Cf. A099877, Decimal expansion of a nested radical: sqrt(1^2 + cubeRoot(2^3 + 4thRoot(3^4 + 5thRoot(4^5 + ...
Cf. A099878, Decimal expansion of a nested radical: sqrt(1 + cubeRoot(2 + 4thRoot(3 + 5thRoot(4 + ...
Cf. A099879, Decimal expansion of a nested radical: sqrt(1^2 + sqrt(2^2 + sqrt(3^2 + ...
(End)

Programs

  • Mathematica
    fQ[n_] := Plus @@ Flatten[ Table[ #[[2]], {1}] & /@ FactorInteger[n]] == 2; t = Select[ Range[ 300], fQ[ # ] &]; f[n_] := Block[{k = n, s = 0}, While[k > 0, s = Sqrt[s + t[[k]]]; k-- ]; s]; ContinuedFraction[ f[90], 99] (* Robert G. Wilson v, Apr 21 2005 *)

Formula

continued fraction representation of: sqrt(4 + sqrt(6 + sqrt(9 + sqrt(10 + sqrt(14 + ... + sqrt(semiprime(n)=A001358(n))))).

Extensions

Offset changed by Andrew Howroyd, Aug 03 2024

A239350 Superprimorials squared.

Original entry on oeis.org

1, 4, 144, 129600, 5715360000, 30497732496000000, 27502882612852046400000000, 7167813920637790505994548640000000000, 674376505248717910810215697948155164304000000000000, 33564007734235791949707248640534383334045138980782017600000000000000
Offset: 0

Views

Author

Jonathan Sondow, Mar 22 2014

Keywords

Comments

Square of product of first n primorials = A006939(n)^2.
Smallest number with n distinct even exponents in its prime factorization.
The prime version of Ramanujan's infinite nested radical 1*sqrt(1+2*sqrt(1+3*sqrt(1+...))) is 2*sqrt(1+3*sqrt(1+5*sqrt(1+...))) = sqrt(4+sqrt(144+sqrt(129600+...))) = sqrt(a(1)+sqrt(a(2)+sqrt(a(3)+...))). See A239349 and A055209.

Crossrefs

Programs

  • Mathematica
    Rest[FoldList[Times, 1, FoldList[Times, 1, Prime[Range[9]]^2]]]

Formula

a(n) = Product_{k=1..n} A002110(k)^2 = Product_{k=1..n} prime(k)^(2(n-k+1)).

A105818 Continued fraction expansion of the Fibonacci nested radical (A105817).

Original entry on oeis.org

1, 1, 1, 1, 23, 18, 1, 1, 1, 1, 1, 1, 2, 1, 22, 2, 1, 53, 1, 1, 10, 1, 1, 17, 2, 4, 1, 27, 1, 2, 422, 3, 3, 13, 12, 5, 28, 1, 3, 1, 2, 1, 3, 2, 4, 6, 6, 3, 5, 50, 1, 1, 6, 3, 2, 1, 118, 2, 1, 1, 2, 6, 1, 4, 1, 1, 5, 2, 3, 3, 16, 1, 4, 6, 2, 2, 22, 4, 3, 10, 1, 1, 49, 5, 1, 1, 12, 1, 1, 3, 13, 3, 10, 1, 2
Offset: 0

Views

Author

Jonathan Vos Post, Apr 21 2005

Keywords

Comments

The decimal expansion of this is A105817. "It was discovered by T. Vijayaraghavan that the infinite radical, sqrt( a_1 + sqrt( a_2 + sqrt ( a_3 + sqrt( a_4 + ... where a_n => 0, will converge to a limit if and only if the limit of (ln a_n)/2^n exists." [Clawson, 229; Sloane]. We know the asymptotic limit of Fibonacci numbers is Phi^n (Binet expansion) and that Phi^n < 2^n and hence that the Fibonacci Nested Radical converges.
Clawson misstates Vijayaraghavan's theorem. Vijayaraghavan proved that for a_n > 0, the infinite radical sqrt(a_1 + sqrt(a_2 + sqrt(a_3 + ...))) converges if and only if limsup (log a_n)/2^n < infinity. (For example, suppose a_n = 1 if n is odd, and a_n = e^2^n if n is even. Then (log a_n)/2^n = 0, 1, 0, 1, 0, 1, ... for n >= 1, so the limit does not exist. However, limsup (log a_n)/2^n = 1 and the infinite radical converges.) - Jonathan Sondow, Mar 25 2014

Examples

			1.66198246232781155796760608181513129505616756246503500829906806743...
		

References

  • Calvin C. Clawson, "Mathematical Mysteries, the beauty and magic of numbers," Perseus Books, Cambridge, Mass., 1996, pages 142 & 229.
  • S. R. Finch, "Analysis of a Radical Expansion." Section 1.2.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, p. 8, 2003.

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = n, s = 0}, While[k > 0, s = Sqrt[s + Fibonacci[k]]; k-- ]; s]; ContinuedFraction[ f[46], 95] (* Robert G. Wilson v, Apr 21 2005 *)

Formula

Sqrt(1 + Sqrt(1 + Sqrt(2 + Sqrt(3 + Sqrt(5 + ... + Sqrt(Fibonacci(n) = A000045)))).

Extensions

Offset changed by Andrew Howroyd, Aug 03 2024

A286984 Decimal expansion of (2 + sqrt(5) + sqrt(15 - 6*sqrt(5)))/2.

Original entry on oeis.org

2, 7, 4, 7, 2, 3, 8, 2, 7, 4, 9, 3, 2, 3, 0, 4, 3, 3, 3, 0, 5, 7, 4, 6, 5, 1, 8, 6, 1, 3, 4, 2, 0, 2, 8, 2, 6, 7, 5, 8, 1, 6, 3, 8, 7, 8, 7, 7, 6, 1, 6, 7, 9, 8, 7, 7, 8, 3, 8, 0, 4, 3, 7, 3, 8, 5, 6, 2, 2, 4, 3, 6, 4, 8, 5, 3, 8, 3, 0, 1, 5, 0, 3, 4, 3, 1, 5
Offset: 1

Views

Author

Felix Fröhlich, May 17 2017

Keywords

Comments

See Question 722 on page 219 of Berndt and Rankin, 2001. This says, in part: "Solve completely x^2 = a + y, y^2 = a + z, z^2 = a + u, u^2 = a + x and deduce that, if x = sqrt(5 + sqrt(5 + sqrt(5 - sqrt(5 + x)))), then x = 1/2(2 + sqrt(5) + sqrt(15 - 6*sqrt(5))), ....".
A quartic integer with minimal polynomial x^4 - 4x^3 - 4x^2 + 31x - 29. - Charles R Greathouse IV, May 17 2017

Examples

			2.74723827493230433305746518613420282675...
		

References

  • B. C. Berndt and R. A. Rankin, Ramanujan: Essays and Surveys, American Mathematical Society, 2001, ISBN 0-8218-2624-7.

Crossrefs

Programs

  • Mathematica
    RealDigits[(2 + Sqrt[5] + Sqrt[15-6*Sqrt[5]])/2, 10, 120][[1]] (* Amiram Eldar, Jun 27 2023 *)
  • PARI
    default(realprecision, 90); (2+sqrt(5)+sqrt(15-6*sqrt(5)))/2
    
  • PARI
    solve(x=2,3,x-sqrt(5+sqrt(5+sqrt(5-sqrt(5 + x))))) \\ Hugo Pfoertner, Sep 02 2018
Showing 1-10 of 18 results. Next