cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A105818 Continued fraction expansion of the Fibonacci nested radical (A105817).

Original entry on oeis.org

1, 1, 1, 1, 23, 18, 1, 1, 1, 1, 1, 1, 2, 1, 22, 2, 1, 53, 1, 1, 10, 1, 1, 17, 2, 4, 1, 27, 1, 2, 422, 3, 3, 13, 12, 5, 28, 1, 3, 1, 2, 1, 3, 2, 4, 6, 6, 3, 5, 50, 1, 1, 6, 3, 2, 1, 118, 2, 1, 1, 2, 6, 1, 4, 1, 1, 5, 2, 3, 3, 16, 1, 4, 6, 2, 2, 22, 4, 3, 10, 1, 1, 49, 5, 1, 1, 12, 1, 1, 3, 13, 3, 10, 1, 2
Offset: 0

Views

Author

Jonathan Vos Post, Apr 21 2005

Keywords

Comments

The decimal expansion of this is A105817. "It was discovered by T. Vijayaraghavan that the infinite radical, sqrt( a_1 + sqrt( a_2 + sqrt ( a_3 + sqrt( a_4 + ... where a_n => 0, will converge to a limit if and only if the limit of (ln a_n)/2^n exists." [Clawson, 229; Sloane]. We know the asymptotic limit of Fibonacci numbers is Phi^n (Binet expansion) and that Phi^n < 2^n and hence that the Fibonacci Nested Radical converges.
Clawson misstates Vijayaraghavan's theorem. Vijayaraghavan proved that for a_n > 0, the infinite radical sqrt(a_1 + sqrt(a_2 + sqrt(a_3 + ...))) converges if and only if limsup (log a_n)/2^n < infinity. (For example, suppose a_n = 1 if n is odd, and a_n = e^2^n if n is even. Then (log a_n)/2^n = 0, 1, 0, 1, 0, 1, ... for n >= 1, so the limit does not exist. However, limsup (log a_n)/2^n = 1 and the infinite radical converges.) - Jonathan Sondow, Mar 25 2014

Examples

			1.66198246232781155796760608181513129505616756246503500829906806743...
		

References

  • Calvin C. Clawson, "Mathematical Mysteries, the beauty and magic of numbers," Perseus Books, Cambridge, Mass., 1996, pages 142 & 229.
  • S. R. Finch, "Analysis of a Radical Expansion." Section 1.2.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, p. 8, 2003.

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = n, s = 0}, While[k > 0, s = Sqrt[s + Fibonacci[k]]; k-- ]; s]; ContinuedFraction[ f[46], 95] (* Robert G. Wilson v, Apr 21 2005 *)

Formula

Sqrt(1 + Sqrt(1 + Sqrt(2 + Sqrt(3 + Sqrt(5 + ... + Sqrt(Fibonacci(n) = A000045)))).

Extensions

Offset changed by Andrew Howroyd, Aug 03 2024

A257574 Continued square root map applied to the sequence of positive even numbers, (2, 4, 6, 8, ...).

Original entry on oeis.org

2, 1, 5, 8, 4, 7, 6, 8, 7, 2, 3, 1, 1, 0, 3, 9, 7, 6, 5, 6, 5, 5, 8, 5, 3, 4, 7, 9, 8, 0, 7, 0, 2, 5, 2, 4, 1, 6, 6, 9, 6, 9, 4, 4, 4, 0, 3, 5, 4, 2, 8, 6, 6, 7, 0, 3, 7, 5, 5, 0, 9, 6, 3, 4, 2, 1, 9, 4, 6, 2, 4, 0, 7, 4, 5, 4, 9, 7, 7, 1, 1, 8, 5, 9, 9, 8, 0
Offset: 1

Views

Author

N. J. A. Sloane, May 02 2015

Keywords

Comments

The continued square root or CSR map applied to a sequence b = (b(1), b(2), b(3), ...) is the number CSR(b) := sqrt(b(1)+sqrt(b(2)+sqrt(b(3)+sqrt(b(4)+...)))).
Taking out a factor sqrt(2), one gets CSR(2, 4, 6, 8, ...) = sqrt(2) CSR(1, 1, 3/8, 1/32, ...) < A002193*A001622 = (sqrt(5)+1)/sqrt(2). - M. F. Hasler, May 01 2018

Examples

			sqrt(2 + sqrt(4 + sqrt(6 + sqrt(8 + ...)))) = 2.1584768723110397656558534...
		

Crossrefs

Programs

  • PARI
    (CSR(v,s)=forstep(i=#v,1,-1,s=sqrt(v[i]+s));s); t=0;for(N=5,oo,(t==t=Str(CSR([1..2*N]*2)))&&break;print(2*N": "t)) \\ Allows to see the convergence, which is reached when length of vector ~ precision [given as number of digits]. Using Str() to avoid infinite loop when internal representation is "fluctuating". - M. F. Hasler, May 04 2018

Extensions

a(27)-a(87) from Hiroaki Yamanouchi, May 03 2015
Edited by M. F. Hasler, May 01 2018

A105546 Decimal expansion of prime nested radical.

Original entry on oeis.org

2, 1, 0, 3, 5, 9, 7, 4, 9, 6, 3, 3, 9, 8, 9, 7, 2, 6, 2, 6, 1, 9, 9, 3, 9, 6, 4, 9, 6, 8, 5, 3, 2, 5, 4, 4, 4, 0, 4, 2, 1, 6, 2, 2, 8, 8, 2, 4, 0, 0, 1, 3, 8, 7, 2, 9, 8, 6, 8, 7, 2, 8, 4, 5, 6, 3, 8, 8, 5, 1, 7, 0, 8, 4, 8, 3, 7, 3, 6, 2, 3, 2, 1, 8, 4, 6, 6, 9, 7, 4, 7, 6, 3, 3, 5, 5, 2, 1, 9, 4, 4, 9, 4, 0, 9
Offset: 1

Views

Author

Jonathan Vos Post, Apr 12 2005

Keywords

Comments

sqrt(1 + sqrt(2 + sqrt(3 + sqrt(4 + ...)))) = 1.75793275661800...
"It was discovered by T. Vijayaraghavan that the infinite radical, sqrt( a_1 + sqrt( a_2 + sqrt ( a_3 + sqrt( a_4 + ... )))) where a_n >= 0, will converge to a limit if and only if the limit of log(a_n)/2^n exists." [Clawson, 229; cf. A072449].
We know the asymptotic limit of primes and hence that the Prime Nested Radical converges.
Clawson misstates Vijayaraghavan's theorem. Vijayaraghavan proved that for a_n > 0, the infinite radical sqrt(a_1 + sqrt(a_2 + sqrt(a_3 + ...))) converges if and only if limsup (log a_n)/2^n < infinity. (For example, suppose a_n = 1 if n is odd, and a_n = e^2^n if n is even. Then (log a_n)/2^n = 0, 1, 0, 1, 0, 1, ... for n >= 1, so the limit does not exist. However, limsup (log a_n)/2^n = 1 and the infinite radical converges.) - Jonathan Sondow, Mar 25 2014

Examples

			2.10359749633989726261993964968532544404216228824001387298687284563...
		

References

  • Calvin C. Clawson, "Mathematical Mysteries, the beauty and magic of numbers," Perseus Books, Cambridge, Mass., 1996, pages 142 and 229.
  • S. R. Finch, Analysis of a Radical Expansion, Section 1.2.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, p. 8, 2003.

Crossrefs

A105548 is the continued fraction representation of this prime nested radical.
A105815 is the similar semiprime nested radical.
A105817 is the Fibonacci nested radical.

Programs

  • Mathematica
    RealDigits[Fold[Sqrt[#1 + #2] &, 0, Reverse[Prime[Range[ 80]]]], 10, 111][[1]] (* Robert G. Wilson v, May 31 2005 *)

Formula

sqrt(2 + sqrt(3 + sqrt(5 + sqrt(7 + sqrt(11 + ... + sqrt(prime(n) + ...)))).

Extensions

Crossrefs corrected by Jaroslav Krizek, Jan 03 2015

A151558 Decimal expansion of the Lucas nested (A000204) radical.

Original entry on oeis.org

1, 8, 4, 0, 7, 6, 8, 3, 2, 8, 1, 4, 6, 0, 8, 2, 6, 8, 9, 8, 2, 0, 5, 7, 4, 5, 7, 7, 7, 4, 3, 5, 5, 7, 7, 8, 8, 6, 2, 1, 0, 6, 0, 3, 8, 7, 7, 7, 2, 1, 5, 4, 1, 6, 0, 5, 0, 8, 4, 9, 0, 2, 5, 0, 0, 4, 7, 8, 5, 1, 7, 4, 0, 5, 5, 6, 3, 4, 7, 0, 7, 7, 8, 5, 8, 9, 6, 0, 4, 5, 7, 0, 8, 6, 5, 1, 7, 2, 7, 8, 6, 1, 9, 5, 1
Offset: 1

Views

Author

Keywords

Comments

Analog of A105817 for the Lucas numbers (A000204).

Examples

			1.840768328146082689820574577743557788621060387772...
		

Programs

  • Mathematica
    RealDigits[ Fold[ Sqrt[ #1 + #2] &, 0, Reverse@ LucasL@ Range@ 45], 10, 111][[1]] (* Robert G. Wilson v, May 29 2009 *)

Extensions

More terms from Robert G. Wilson v, May 29 2009

A296041 Decimal expansion of sqrt(1 + sqrt(3 + sqrt(6 + sqrt(10 + sqrt(15 + ... + sqrt(k*(k + 1)/2 + ...)))))).

Original entry on oeis.org

1, 8, 6, 4, 4, 5, 8, 9, 5, 8, 1, 6, 3, 4, 8, 8, 1, 3, 2, 3, 5, 2, 0, 0, 3, 7, 1, 5, 2, 7, 3, 9, 4, 3, 7, 8, 4, 1, 5, 6, 4, 2, 2, 0, 6, 9, 8, 2, 6, 6, 4, 9, 9, 2, 3, 5, 8, 6, 9, 0, 4, 3, 8, 1, 8, 2, 7, 5, 3, 2, 5, 7, 3, 5, 8, 3, 4, 5, 5, 8, 1, 7, 7, 9, 9, 6, 4, 4, 9, 0, 6, 1, 9, 8, 3, 7, 8, 2, 2, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 03 2017

Keywords

Examples

			1.86445895816348813235200371527394378415642206982664...
		

Crossrefs

A352495 Decimal expansion of the pearl of the Riemann zeta function.

Original entry on oeis.org

1, 0, 0, 0, 0, 2, 7, 8, 5, 7, 6, 3, 3, 0, 6, 6, 4, 4, 0, 7, 3, 0, 2, 1, 5, 0, 9, 1, 8, 5, 7, 3, 6, 2, 1, 7, 7, 8, 2, 9, 7, 1, 0, 0, 9, 1, 4, 0, 5, 3, 3, 3, 0, 4, 7, 8, 7, 9, 7, 3, 1, 9, 2, 8, 4, 5, 8, 6, 4, 7, 3, 5, 4, 1, 6, 6, 6, 1, 2, 9, 3, 5, 2, 6, 5, 0, 0
Offset: 1

Views

Author

Eduard Roure Perdices, Mar 18 2022

Keywords

Comments

Let Z be the Riemann zeta function, and consider its sequence of nontrivial zeros with nonnegative imaginary part, {r(m)}, so that for every m >= 1, Z(r(m)) = 0, 0 <= Re(r(m)) <= 1, and 0 <= Im(r(m)), and for every k > m, Im(r(m)) < Im(r(k)), or Im(r(m)) = Im(r(k)) and Re(r(m)) < Re(r(k)).
Let i be the imaginary unit, and define the sequence {b(m)} as follows: b(1) = Z((r(1)-1/2)/i), b(2) = Z((r(1)-1/2)/i + Z((r(2)-1/2)/i)), b(3) = Z((r(1)-1/2)/i + Z((r(2)-1/2)/i + Z((r(3)-1/2)/i))), and so on. If this sequence converges, we call its limit the pearl of Z.
Suppose that the Riemann Hypothesis is true. Then the sequence {b(m)} is real. On the interval [2,oo), Z is decreasing, positive, and bounded above by 2, so {b(2*m-1)} is decreasing and bounded below by 0, and hence, it converges to a real value, say A. Moreover, {b(2*m)} is increasing and b(2*m) <= b(2*m+1), and by repeated application of the mean value theorem, b(2*m+1) - b(2*m) <= Z(Im(r(2*m+1))) * |Z'(Im(r(1)))|^(2*m) <= 2*(4/100000)^(2*m), so {b(2*m)} also converges to A, and {a(n)} is the decimal expansion of this value.
We don't know if the existence of a real pearl of Z implies the Riemann Hypothesis.
More generally, the definition of pearl works for Dirichlet L-functions, giving rise to analogous constants, not necessarily real.

Examples

			1.00002785763306644073021509185736217782971009140533304787973192845864...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Re[res = Fold[Zeta[#1 + #2] &, 0, Reverse[(ZetaZero[Range[10]] - 1/2)/I]]], 10, 100][[1]]

A296040 Decimal expansion of sqrt(1^1 + sqrt(2^2 + sqrt(3^3 + sqrt(4^4 + sqrt(5^5 + ...))))).

Original entry on oeis.org

2, 0, 6, 6, 1, 7, 6, 6, 8, 6, 4, 2, 4, 0, 5, 1, 0, 8, 4, 2, 6, 8, 6, 0, 1, 9, 1, 5, 7, 7, 2, 4, 3, 1, 1, 0, 0, 5, 1, 0, 6, 7, 2, 1, 6, 8, 5, 8, 2, 1, 0, 4, 6, 6, 2, 6, 4, 1, 1, 6, 1, 3, 9, 0, 8, 5, 6, 8, 1, 6, 9, 0, 6, 5, 3, 4, 2, 2, 2, 2, 0, 0, 2, 6, 0, 4, 9, 5, 6, 1, 0, 4, 9, 2, 2, 5, 1, 8, 1, 8
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 03 2017

Keywords

Examples

			2.0661766864240510842686019157724311005106721685821046...
		

Crossrefs

A296042 Decimal expansion of sqrt(1 + 2*sqrt(2 + 3*sqrt(3 + 4*sqrt(4 + 5*sqrt(5 + 6*sqrt(6 + ...)))))).

Original entry on oeis.org

3, 0, 8, 3, 3, 5, 5, 1, 4, 1, 8, 3, 0, 6, 9, 4, 4, 5, 8, 0, 5, 1, 1, 4, 2, 5, 8, 0, 0, 8, 8, 1, 7, 1, 9, 3, 0, 6, 0, 1, 4, 7, 8, 4, 9, 3, 3, 0, 0, 2, 3, 5, 3, 5, 5, 4, 9, 4, 8, 4, 1, 4, 7, 6, 5, 4, 8, 3, 4, 3, 1, 0, 7, 0, 2, 1, 4, 3, 3, 8, 1, 0, 0, 2, 5, 7, 9, 0, 6, 5, 8, 1, 1, 1, 5, 2, 3, 7, 8, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 03 2017

Keywords

Comments

Decimal expansion of sqrt(1 + sqrt(8 + sqrt(432 + sqrt(1327104 + ... + sqrt(k*A030450(k) + ...))))).

Examples

			3.0833551418306944580511425800881719306014784933...
		

Crossrefs

Showing 1-8 of 8 results.