A239618 Number of primitive Euler bricks with side length a < b < c < 10^n, i.e., in a boxed parameter space with dimension 10^n.
0, 0, 5, 19, 65, 242, 704, 1884, 4631
Offset: 1
Examples
a(3) = 5, since there are the five primitive Euler bricks [44, 117, 240], [85, 132, 720], [140, 480, 693], [160, 231, 792], [240, 252, 275] with longest side length < 1000.
Links
- Eric Weisstein's World of Mathematics, Euler Brick
- Index entries for sequences related to bricks
Programs
-
Sage
def a(n): ans = 0 for x in range(1,10^n): divs = Integer(x^2).divisors() for d in divs: if (d <= x^2/d): continue if (d-x^2/d >= 2*x): break if (d-x^2/d)%2==0: y = (d-x^2/d)/2 for e in divs: if (e <= x^2/e): continue if (e-x^2/e >= 2*y): break if (e-x^2/e)%2==0: z = (e-x^2/e)/2 if (gcd([x,y,z])==1) and (y^2+z^2).is_square(): ans += 1 return ans # Robin Visser, Jan 01 2024
Extensions
a(6)-a(8) from Giovanni Resta, Mar 22 2014
a(9) from Robin Visser, Jan 01 2024
Comments