A239632 Number of parts in all palindromic compositions of n.
0, 1, 3, 4, 10, 12, 28, 32, 72, 80, 176, 192, 416, 448, 960, 1024, 2176, 2304, 4864, 5120, 10752, 11264, 23552, 24576, 51200, 53248, 110592, 114688, 237568, 245760, 507904, 524288, 1081344, 1114112, 2293760, 2359296, 4849664, 4980736, 10223616, 10485760, 21495808, 22020096, 45088768, 46137344
Offset: 0
Examples
a(5)=12 because we have: 5, 1+3+1, 2+1+2, 1+1+1+1+1 with a total of 12 parts.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,4,0,-4).
Crossrefs
Cf. A051159.
Programs
-
Mathematica
nn=30; r=Solve[p==y/(1-x) - y + 1 + y^2*x^2/(1-x^2)*p, p]; CoefficientList[Series[D[p/.r,y]/.y->1, {x,0,nn}], x] CoefficientList[Series[(x + 3 x^2 - 2 x^4)/(1 - 2 x^2)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 23 2014 *)
Formula
G.f.: (x + 3*x^2 - 2*x^4)/(1 - 2*x^2)^2.
a(n) = Sum_{k=1..n} A051159(n,k)*k.
a(n) = 4*a(n-2) - 4*a(n-4) for n > 3. - Giovanni Resta, Mar 23 2014
a(2k) = (2k+1)*2^(k-1) for k>0, a(2k+1) = (2k+2)*2^(k-1) for k>=0. - Gregory L. Simay, Dec 05 2022
E.g.f.: (2*(1 + x)*cosh(sqrt(2)*x) + sqrt(2)*(1 + 2*x)*sinh(sqrt(2)*x) - 2)/4. - Stefano Spezia, Apr 25 2024