cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239632 Number of parts in all palindromic compositions of n.

Original entry on oeis.org

0, 1, 3, 4, 10, 12, 28, 32, 72, 80, 176, 192, 416, 448, 960, 1024, 2176, 2304, 4864, 5120, 10752, 11264, 23552, 24576, 51200, 53248, 110592, 114688, 237568, 245760, 507904, 524288, 1081344, 1114112, 2293760, 2359296, 4849664, 4980736, 10223616, 10485760, 21495808, 22020096, 45088768, 46137344
Offset: 0

Views

Author

Geoffrey Critzer, Mar 22 2014

Keywords

Examples

			a(5)=12 because we have: 5, 1+3+1, 2+1+2, 1+1+1+1+1 with a total of 12 parts.
		

Crossrefs

Cf. A051159.

Programs

  • Mathematica
    nn=30; r=Solve[p==y/(1-x) - y + 1 + y^2*x^2/(1-x^2)*p, p]; CoefficientList[Series[D[p/.r,y]/.y->1, {x,0,nn}], x]
    CoefficientList[Series[(x + 3 x^2 - 2 x^4)/(1 - 2 x^2)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 23 2014 *)

Formula

G.f.: (x + 3*x^2 - 2*x^4)/(1 - 2*x^2)^2.
a(n) = Sum_{k=1..n} A051159(n,k)*k.
a(n) = 4*a(n-2) - 4*a(n-4) for n > 3. - Giovanni Resta, Mar 23 2014
a(2k) = (2k+1)*2^(k-1) for k>0, a(2k+1) = (2k+2)*2^(k-1) for k>=0. - Gregory L. Simay, Dec 05 2022
E.g.f.: (2*(1 + x)*cosh(sqrt(2)*x) + sqrt(2)*(1 + 2*x)*sinh(sqrt(2)*x) - 2)/4. - Stefano Spezia, Apr 25 2024