A239790 The smallest multidigit prime of a sequence of n consecutive primes such that their digit sums are also a sequence of n consecutive primes.
11, 41, 41, 191, 402131, 6340271501
Offset: 1
Examples
a(4)=191 because 191, 193, 197, 199 generates 11, 13, 17, 19. a(5)=402131 because 402131, 402133, 402137, 402139, 402197 generates 11,13,17,19,23.
Links
- Números y Algo Más, Primos cuya suma digital dan primos
- Carlos Rivera, Puzzle 1229. Set of consecutive primes such that..., The Prime Puzzles & Problems Connection.
- B. Sindelar, Two Sets of Consecutive Primes and their Sum of Digits Connection [Broken link]
- Bill Sindelar, Jens Kruse Andersen, Marian Otremba, Two Sets of Consecutive Primes and their Sum of Digits Connection, digest of 12 messages in primenumbers Yahoo group, Aug 26 - Aug 30, 2016.
Programs
-
PARI
isok(p, n) = if ((p > 10) && isprime(p), my(v=vector(n)); v[1] = p; for (i=2, n, v[i] = nextprime(v[i-1]+1);); my(vs=vector(n, i, sumdigits(v[i]))); if (!isprime(vs[1]), return(0)); for (i=2, n, if (vs[i] != nextprime(vs[i-1]+1), return(0));); return(1);); a(n) = my(k=1); while (!isok(k, n), k++); k; \\ Michel Marcus, Aug 28 2025
-
UBASIC
10 P=7:KM=0:'puzzle 1290, Meller 20 P=nxtprm(P):if P>2^32-20 then end 30 gosub *K:if K<=KM then goto 20 40 print K,P,Q1:KM=K:goto 20 100 *K 110 Z=P:gosub *SODZ 120 if SODZ<>prmdiv(SODZ) then return 130 K=1:Q=SODZ:Q1=Q 140 Z=nxtprm(Z):gosub *SODZ 150 if SODZ<>nxtprm(Q) then return 160 K=K+1:Q=nxtprm(Q):goto 140 200 *SODZ:SODZ=0:L=alen(Z) 210 for I=1 to L:D=val(mid(str(Z),I+1,1)) 220 SODZ=SODZ+D:next I 230 return
Extensions
a(6) from Giovanni Resta, Apr 03 2014
Comments