cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239874 Integers k such that 2*k^2 + 1 and 2*k^3 + 1 are prime.

Original entry on oeis.org

1, 6, 9, 21, 27, 30, 72, 96, 99, 162, 186, 204, 237, 264, 297, 321, 357, 360, 375, 492, 537, 621, 759, 819, 834, 897, 936, 1065, 1242, 1326, 1329, 1359, 1419, 1494, 1506, 1596, 1662, 1704, 1740, 1749, 1761, 1842, 1869, 2157, 2175, 2250, 2274, 2451, 2547
Offset: 1

Views

Author

Zak Seidov, Mar 28 2014

Keywords

Comments

All terms > 1 are multiples of 3. Also, no term is congruent to 3 modulo 5.

Crossrefs

Intersection of A089001 and A168550.

Programs

  • Maple
    select(t -> isprime(2*t^2+1) and isprime(2*t^3+1), [$1..6000]); # Robert Israel, Nov 03 2024
  • Mathematica
    s={1};Do[If[PrimeQ [2k^2+1]&&PrimeQ[2k^3+1],AppendTo[s,k]],{k,3,10^3,3}];s
    Select[Range[3500], PrimeQ[2 #^2 + 1] && PrimeQ[2 #^3 + 1]&] (* Vincenzo Librandi, Mar 29 2014 *)
  • PARI
    s=[]; for(n=1, 4000, if(isprime(2*n^2+1) && isprime(2*n^3+1), s=concat(s, n))); s \\ Colin Barker, Mar 28 2014