A239874 Integers k such that 2*k^2 + 1 and 2*k^3 + 1 are prime.
1, 6, 9, 21, 27, 30, 72, 96, 99, 162, 186, 204, 237, 264, 297, 321, 357, 360, 375, 492, 537, 621, 759, 819, 834, 897, 936, 1065, 1242, 1326, 1329, 1359, 1419, 1494, 1506, 1596, 1662, 1704, 1740, 1749, 1761, 1842, 1869, 2157, 2175, 2250, 2274, 2451, 2547
Offset: 1
Keywords
Links
- Zak Seidov, Table of n, a(n) for n = 1..1367 [Duplicate terms removed by _Georg Fischer_, Nov 03 2024]
Programs
-
Maple
select(t -> isprime(2*t^2+1) and isprime(2*t^3+1), [$1..6000]); # Robert Israel, Nov 03 2024
-
Mathematica
s={1};Do[If[PrimeQ [2k^2+1]&&PrimeQ[2k^3+1],AppendTo[s,k]],{k,3,10^3,3}];s Select[Range[3500], PrimeQ[2 #^2 + 1] && PrimeQ[2 #^3 + 1]&] (* Vincenzo Librandi, Mar 29 2014 *)
-
PARI
s=[]; for(n=1, 4000, if(isprime(2*n^2+1) && isprime(2*n^3+1), s=concat(s, n))); s \\ Colin Barker, Mar 28 2014
Comments