cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A239925 Integers n such that 2n^2+1, 2n^3+1, 2n^4+1 and 2n^5+1 are prime.

Original entry on oeis.org

1, 30, 8025, 44250, 49335, 49599, 155061, 218196, 255975, 293754, 324684, 333405, 336045, 367839, 381804, 416796, 476814, 514005, 529650, 558291, 668856, 682716, 747810, 893190, 930336, 933576, 1004004, 1246266, 1270860, 1383126, 1392111, 1427211, 1491645, 1497024, 1745904, 1786551
Offset: 1

Views

Author

Zak Seidov, Mar 29 2014

Keywords

Crossrefs

Subsequence of A239920. Cf. A089001, A168550, A239874.

Programs

  • Mathematica
    Select[Range[0, 2000000], PrimeQ[2 #^2 + 1] && PrimeQ[2 #^3 + 1] && PrimeQ[2 #^4 + 1] && PrimeQ[2 #^5 + 1] &] (* Vincenzo Librandi, Mar 29 2014 *)
    Select[Range[179*10^4], AllTrue[2 #^Range[2, 5] + 1, PrimeQ] &] (* Harvey P. Dale, Sep 24 2021 *)
  • PARI
    s=[]; for(n=1, 2000000, if(isprime(2*n^2+1) && isprime(2*n^3+1) && isprime(2*n^4+1) && isprime(2*n^5+1), s=concat(s, n))); s \\ Colin Barker, Mar 29 2014

A239920 Integers n such that 2n^2+1, 2n^3+1 and 2n^4+1 are prime.

Original entry on oeis.org

1, 6, 21, 30, 96, 297, 375, 621, 1359, 1704, 1749, 1761, 3696, 3849, 4467, 8025, 8646, 9834, 11352, 15630, 17397, 17949, 19575, 20274, 27087, 28452, 30504, 32154, 32307, 33666, 35670, 36240, 37785, 37962, 39927, 40617, 42987, 44250, 47559, 49335, 49599
Offset: 1

Views

Author

Zak Seidov, Mar 29 2014

Keywords

Crossrefs

Subsequence of A239874. Cf. A089001, A168550.

Programs

  • Mathematica
    Select[Range[0, 50000], PrimeQ[2 #^2 + 1] && PrimeQ[2  #^3 + 1] && PrimeQ[2 #^4 + 1]&] (* Vincenzo Librandi, Mar 30 2014 *)
  • PARI
    s=[]; for(n=1, 100000, if(isprime(2*n^2+1) && isprime(2*n^3+1) && isprime(2*n^4+1), s=concat(s, n))); s \\ Colin Barker, Mar 29 2014

A240099 Integers n such that 2n^k + 1, for k = 2..6, are prime.

Original entry on oeis.org

1, 44250, 1004004, 3490575, 3517335, 5750115, 10729026, 19193559, 20251770, 25284039, 25552194, 30204801, 33733206, 39015405, 47518809, 52463445, 58370025, 69502971, 72009429, 77086380, 78510156, 83972646, 85955475, 89190969, 90499584, 92246199, 95374005
Offset: 1

Views

Author

Zak Seidov, Apr 01 2014

Keywords

Comments

Note that 2n^7+1 may or may not be prime.
First n>1 such that 2n^k+1, for k=2..7, are prime, is a(4) = 3490575.
First n>1 such that 2n^k+1, for k=2..8, are prime, is 83972646.
Subsequence of A239925: a(2) = 44250 = A239925(4), a(3) = 1004004 = A239925(27).

Crossrefs

Programs

  • Mathematica
    Select[Range[10^8],AllTrue[2#^Range[2,6]+1,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 18 2015 *)

A240105 Integers m such that 2*m^k + 1, for k = 2..7, are prime.

Original entry on oeis.org

1, 3490575, 83972646, 414180489, 476072025, 1881147720, 3020243916, 3188924769, 3285167214, 3543143220, 6593858205, 8239349955, 10914074124, 14102235060, 15455042889, 16196415300, 16588528539, 16636093485, 17688635511, 17929182270, 18997337436, 19290317670, 19347263739
Offset: 1

Views

Author

Zak Seidov, Apr 01 2014

Keywords

Comments

First m>1 such that 2*m^k+1, for k=2..8, are prime, is a(3) = 83972646.
Subsequence of A240099: a(2) = 3490575 = A240099(4), a(3) = 83972646 = A240099(22).

Crossrefs

Extensions

More terms from Jinyuan Wang, Jun 12 2025
Showing 1-4 of 4 results.