A239878 Numbers k with digit_sum(k*k) + 1 = digit_sum((k+1)*(k+1)).
0, 18, 27, 36, 45, 72, 81, 108, 153, 198, 216, 225, 243, 252, 270, 297, 306, 342, 369, 396, 423, 441, 450, 477, 486, 495, 504, 513, 522, 549, 558, 576, 603, 630, 639, 657, 693, 702, 729, 747, 756, 783, 801, 846, 891, 918, 954, 963, 972, 981
Offset: 1
Links
- Reiner Moewald, Table of n, a(n) for n = 1..4067
Programs
-
Haskell
import Data.List (elemIndices) a239878 n = a239878_list !! (n-1) a239878_list = elemIndices 1 a240752_list -- Reinhard Zumkeller, Apr 12 2014
-
PARI
isok(n) = (sumdigits(n^2) + 1) == sumdigits((n+1)^2); \\ Michel Marcus, Apr 06 2014
-
Python
def digit_Sum(n): integerString = str(n) digit_Sum=0 for digitLetter in integerString: digit_Sum = digit_Sum + int(digitLetter) return digit_Sum count = 0; for i in range(20000): if(digit_Sum(i*i) + 1 == digit_Sum((i+1)*(i+1))): count = count +1 print(count," ",i)
Formula
A240752(a(n)) = 1. - Reinhard Zumkeller, Apr 12 2014
Comments