A239893 Irregular triangle read by rows: T(n,k) is the number of sensed 3-connected planar maps with n >= 4 faces and k >= 4 vertices.
1, 0, 1, 1, 0, 1, 3, 2, 2, 0, 0, 2, 11, 16, 10, 6, 0, 0, 2, 16, 69, 127, 128, 60, 17, 0, 0, 0, 10, 127, 541, 1188, 1441, 1032, 386, 73, 0, 0, 0, 6, 128, 1188, 5096, 11982, 17265, 15466, 8582, 2652, 389, 0, 0, 0, 0, 60, 1441, 11982, 50586, 127765, 206880, 222472, 158057, 71980, 18914, 2274
Offset: 4
Examples
Triangle begins: 1 0 1 1 0 1 3 2 2 0 0 2 11 16 10 6 0 0 2 16 69 127 128 60 17 0 0 0 10 127 541 1188 1441 1032 386 73 0 0 0 6 128 1188 5096 11982 17265 15466 8582 2652 389 0 0 0 0 60 1441 11982 50586 127765 206880 222472 158057 71980 18914 2274 ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 4..199 (rows 4..17)
- Gunnar Brinkmann and Brendan McKay, Fast generation of planar graphs (expanded edition), Table 9-11.
- Timothy R. Walsh, Efficient enumeration of sensed planar maps, Discrete Math. 293 (2005), no. 1-3, 263--289. MR2136069 (2006b:05062).
- Timothy R. S. Walsh, Counting nonisomorphic three-connected planar maps, J. Combin. Theory Ser. B 32 (1982), no. 1, 33-44.
Crossrefs
Formula
T(n,k) = T(k,n). - Andrew Howroyd, Mar 27 2021
Extensions
Terms a(67) and beyond from Andrew Howroyd, Mar 27 2021
Comments