cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A212438 Irregular triangle read by rows: T(n,k) is the number of polyhedra with n faces and k vertices (n >= 4, k=4..2n-4).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 2, 2, 0, 0, 2, 8, 11, 8, 5, 0, 0, 2, 11, 42, 74, 76, 38, 14, 0, 0, 0, 8, 74, 296, 633, 768, 558, 219, 50, 0, 0, 0, 5, 76, 633, 2635, 6134, 8822, 7916, 4442, 1404, 233, 0, 0, 0, 0, 38, 768, 6134, 25626, 64439, 104213, 112082, 79773, 36528, 9714, 1249
Offset: 4

Views

Author

N. J. A. Sloane, May 16 2012

Keywords

Comments

Because of duality, T(n,k) = T(k,n). - Ivan Neretin, May 25 2016
The number of edges is n+k-2. - Andrew Howroyd, Mar 27 2021

Examples

			Triangle begins:
1
0 1 1
0 1 2  2  2
0 0 2  8 11   8    5
0 0 2 11 42  74   76   38   14
0 0 0  8 74 296  633  768  558  219   50
0 0 0  5 76 633 2635 6134 8822 7916 4442 1404 233
...
		

Crossrefs

A049337, A058787, A212438 are all versions of the same triangle.
Row sums (the same as column sums) are A000944.
Main diagonal is A002856.
Cf. A002840 (by edges), A239893.

Extensions

Terms a(53) and beyond from Andrew Howroyd, Mar 27 2021

A342059 Triangle read by rows: T(n,k) is the number of embeddings on the sphere of 2-connected planar graphs with n nodes and k faces up to orientation preserving isomorphisms, n >= 3, k=2..2*n-4.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 5, 2, 1, 1, 3, 17, 31, 22, 6, 2, 1, 4, 42, 157, 318, 265, 123, 26, 6, 1, 6, 87, 576, 2128, 4009, 4055, 2332, 804, 147, 17, 1, 7, 161, 1664, 9659, 31252, 59244, 66289, 46521, 20604, 5743, 892, 73, 1, 9, 286, 4151, 34700, 168757, 505410, 952044, 1156127, 931227, 506318, 183980, 43180, 5876, 389
Offset: 3

Views

Author

Andrew Howroyd, Mar 27 2021

Keywords

Comments

The number of edges is n+k-2.
Terms of this sequence can be computed using the tool "plantri". The expanded reference gives rows 3..15 of this table.

Examples

			Triangle begins:
  1;
  1, 1,  1;
  1, 2,  5,   2,    1;
  1, 3, 17,  31,   22,    6,    2;
  1, 4, 42, 157,  318,  265,  123,   26,   6;
  1, 6, 87, 576, 2128, 4009, 4055, 2332, 804, 147, 17;
  ...
		

Crossrefs

Row sums are A342058.
Cf. A006406 (by edges), A239893 (3-connected), A342060.

Formula

T(n,2) = 1.
T(n,3) = A253186(n-2).

A384964 Triangle read by rows: T(n,k) is the number of embeddings on the sphere of connected simple planar graphs with n nodes and k faces up to orientation preserving isomorphisms, n >= 1, k=1..max(1,2*n-4).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 3, 8, 8, 6, 2, 1, 6, 29, 60, 73, 52, 25, 6, 2, 14, 113, 388, 768, 903, 728, 379, 136, 26, 6, 34, 444, 2303, 6584, 11782, 14321, 12113, 7298, 3048, 872, 147, 17, 95, 1763, 12650, 49806, 123547, 210314, 255884, 228807, 150929, 73428, 25536, 6142, 892, 73
Offset: 1

Views

Author

Andrew Howroyd, Jun 13 2025

Keywords

Comments

Equivalently, T(n,k) is the number of sensed simple planar maps with n vertices and k faces.
The number of edges is n+k-2.
Terms of this sequence can be computed using the tool "plantri". The expanded reference gives rows 1..14 of this table.

Examples

			Triangle begins:
   1;
   1;
   1,   1,
   2,   2,    1,    1,
   3,   8,    8,    6,     2,     1,
   6,  29,   60,   73,    52,    25,     6,    2,
  14, 113,  388,  768,   903,   728,   379,  136,   26,   6,
  34, 444, 2303, 6584, 11782, 14321, 12113, 7298, 3048, 872, 147, 17;
  ...
		

Crossrefs

Row sums are A384965.
Antidiagonal sums are A006394.
Columns 1..2 are A002995, A384966.
Cf. A379430 (not necessarily simple), A342059 (2-connected), A239893 (3-connected), A384963 (unsensed).

A342061 Triangle read by rows: T(n,k) is the number of sensed 2-connected (nonseparable) planar maps with n edges and k vertices, n >= 2, 2 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 8, 3, 1, 1, 4, 16, 16, 4, 1, 1, 5, 38, 63, 38, 5, 1, 1, 7, 72, 218, 218, 72, 7, 1, 1, 8, 134, 622, 1075, 622, 134, 8, 1, 1, 10, 224, 1600, 4214, 4214, 1600, 224, 10, 1, 1, 12, 375, 3703, 14381, 22222, 14381, 3703, 375, 12, 1
Offset: 2

Views

Author

Andrew Howroyd, Mar 30 2021

Keywords

Comments

The number of faces is n + 2 - k.

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1,   1;
  1, 2,   2,   1;
  1, 3,   8,   3,    1;
  1, 4,  16,  16,    4,   1;
  1, 5,  38,  63,   38,   5,   1;
  1, 7,  72, 218,  218,  72,   7, 1;
  1, 8, 134, 622, 1075, 622, 134, 8, 1;
  ...
		

Crossrefs

Column k=3 is A001399(n-3).
Row sums are A006402.
Cf. A082680 (rooted), A239893, A342059.

Programs

  • PARI
    \\ See section 4 of Walsh reference.
    T(n)={
      my(B=matrix(n, n, i, j, if(i+j <= n+1, (2*i+j-2)!*(2*j+i-2)!/(i!*j!*(2*i-1)!*(2*j-1)!))));
      my(C(i,j)=((i+j-1)*(i+1)*(j+1)/(2*(2*i+j-1)*(2*j+i-1)))*B[(i+1)/2,(j+1)/2]);
      my(D(i,j)=((j+1)/2)*B[i/2, (j+1)/2]);
      my(E(i,j)=((i-1)*(j-1) + 2*(i+j)*(i+j-1))*B[i,j]);
      my(F(i,j)=if(!i, j==1, ((i+j)*(6*j+2*i-5)*j*(2*i+j-1)/(2*(2*i+1)*(2*j+i-2)))*B[i,j]) + if(j-1, binomial(i+2,2)*B[i+1,j-1]));
      vector(n, n, vector(n, i, my(j=n+1-i); B[i,j]
        + (i+j)*if(i%2, if(j%2, C(i,j), D(j,i)), if(j%2, D(i,j)))
        + sumdiv(i+j, d, if(d>1, eulerphi(d)*( if(i%d==0, E(i/d, j/d) ) + if(i%d==1, F((i-1)/d, (j+1)/d)) + if(j%d==1, F((j-1)/d, (i+1)/d)) )))
       )/(2*n+2));
    }
    { my(A=T(10)); for(n=1, #A, print(A[n])) }

Formula

T(n,k) = T(n, n+2-k).

A005645 Number of sensed 3-connected planar maps with n edges.

Original entry on oeis.org

1, 0, 1, 2, 3, 4, 15, 32, 89, 266, 797, 2496, 8012, 26028, 85888, 286608, 965216, 3278776, 11221548, 38665192, 134050521, 467382224, 1638080277, 5768886048, 20407622631, 72494277840, 258527335373, 925322077852, 3323258053528, 11973883092034, 43273374700200, 156836969693756, 569967330200576, 2076647113454878, 7584534277720818, 27764845224462192, 101862027752012402, 374484866509396780, 1379489908513460150
Offset: 6

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002840 (unsensed), A239893.

Formula

a(n) = Sum_{k=4..n-2} A239893(k, n+2-k). - Andrew Howroyd, Mar 27 2021

Extensions

More terms and b-file added by N. J. A. Sloane, May 08 2012

A342057 Number of polyhedra with n faces and n vertices up to orientation preserving isomorphisms.

Original entry on oeis.org

1, 1, 3, 11, 69, 541, 5096, 50586, 534292, 5865150, 66582243, 776705379, 9274453627, 112984297173
Offset: 4

Views

Author

Andrew Howroyd, Mar 27 2021

Keywords

Crossrefs

Main diagonal of A239893.
Cf. A002856.
Showing 1-6 of 6 results.