A212438
Irregular triangle read by rows: T(n,k) is the number of polyhedra with n faces and k vertices (n >= 4, k=4..2n-4).
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 2, 2, 2, 0, 0, 2, 8, 11, 8, 5, 0, 0, 2, 11, 42, 74, 76, 38, 14, 0, 0, 0, 8, 74, 296, 633, 768, 558, 219, 50, 0, 0, 0, 5, 76, 633, 2635, 6134, 8822, 7916, 4442, 1404, 233, 0, 0, 0, 0, 38, 768, 6134, 25626, 64439, 104213, 112082, 79773, 36528, 9714, 1249
Offset: 4
Triangle begins:
1
0 1 1
0 1 2 2 2
0 0 2 8 11 8 5
0 0 2 11 42 74 76 38 14
0 0 0 8 74 296 633 768 558 219 50
0 0 0 5 76 633 2635 6134 8822 7916 4442 1404 233
...
Row sums (the same as column sums) are
A000944.
A342059
Triangle read by rows: T(n,k) is the number of embeddings on the sphere of 2-connected planar graphs with n nodes and k faces up to orientation preserving isomorphisms, n >= 3, k=2..2*n-4.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 5, 2, 1, 1, 3, 17, 31, 22, 6, 2, 1, 4, 42, 157, 318, 265, 123, 26, 6, 1, 6, 87, 576, 2128, 4009, 4055, 2332, 804, 147, 17, 1, 7, 161, 1664, 9659, 31252, 59244, 66289, 46521, 20604, 5743, 892, 73, 1, 9, 286, 4151, 34700, 168757, 505410, 952044, 1156127, 931227, 506318, 183980, 43180, 5876, 389
Offset: 3
Triangle begins:
1;
1, 1, 1;
1, 2, 5, 2, 1;
1, 3, 17, 31, 22, 6, 2;
1, 4, 42, 157, 318, 265, 123, 26, 6;
1, 6, 87, 576, 2128, 4009, 4055, 2332, 804, 147, 17;
...
A384964
Triangle read by rows: T(n,k) is the number of embeddings on the sphere of connected simple planar graphs with n nodes and k faces up to orientation preserving isomorphisms, n >= 1, k=1..max(1,2*n-4).
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 1, 3, 8, 8, 6, 2, 1, 6, 29, 60, 73, 52, 25, 6, 2, 14, 113, 388, 768, 903, 728, 379, 136, 26, 6, 34, 444, 2303, 6584, 11782, 14321, 12113, 7298, 3048, 872, 147, 17, 95, 1763, 12650, 49806, 123547, 210314, 255884, 228807, 150929, 73428, 25536, 6142, 892, 73
Offset: 1
Triangle begins:
1;
1;
1, 1,
2, 2, 1, 1,
3, 8, 8, 6, 2, 1,
6, 29, 60, 73, 52, 25, 6, 2,
14, 113, 388, 768, 903, 728, 379, 136, 26, 6,
34, 444, 2303, 6584, 11782, 14321, 12113, 7298, 3048, 872, 147, 17;
...
A342061
Triangle read by rows: T(n,k) is the number of sensed 2-connected (nonseparable) planar maps with n edges and k vertices, n >= 2, 2 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 8, 3, 1, 1, 4, 16, 16, 4, 1, 1, 5, 38, 63, 38, 5, 1, 1, 7, 72, 218, 218, 72, 7, 1, 1, 8, 134, 622, 1075, 622, 134, 8, 1, 1, 10, 224, 1600, 4214, 4214, 1600, 224, 10, 1, 1, 12, 375, 3703, 14381, 22222, 14381, 3703, 375, 12, 1
Offset: 2
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 3, 8, 3, 1;
1, 4, 16, 16, 4, 1;
1, 5, 38, 63, 38, 5, 1;
1, 7, 72, 218, 218, 72, 7, 1;
1, 8, 134, 622, 1075, 622, 134, 8, 1;
...
-
\\ See section 4 of Walsh reference.
T(n)={
my(B=matrix(n, n, i, j, if(i+j <= n+1, (2*i+j-2)!*(2*j+i-2)!/(i!*j!*(2*i-1)!*(2*j-1)!))));
my(C(i,j)=((i+j-1)*(i+1)*(j+1)/(2*(2*i+j-1)*(2*j+i-1)))*B[(i+1)/2,(j+1)/2]);
my(D(i,j)=((j+1)/2)*B[i/2, (j+1)/2]);
my(E(i,j)=((i-1)*(j-1) + 2*(i+j)*(i+j-1))*B[i,j]);
my(F(i,j)=if(!i, j==1, ((i+j)*(6*j+2*i-5)*j*(2*i+j-1)/(2*(2*i+1)*(2*j+i-2)))*B[i,j]) + if(j-1, binomial(i+2,2)*B[i+1,j-1]));
vector(n, n, vector(n, i, my(j=n+1-i); B[i,j]
+ (i+j)*if(i%2, if(j%2, C(i,j), D(j,i)), if(j%2, D(i,j)))
+ sumdiv(i+j, d, if(d>1, eulerphi(d)*( if(i%d==0, E(i/d, j/d) ) + if(i%d==1, F((i-1)/d, (j+1)/d)) + if(j%d==1, F((j-1)/d, (i+1)/d)) )))
)/(2*n+2));
}
{ my(A=T(10)); for(n=1, #A, print(A[n])) }
A005645
Number of sensed 3-connected planar maps with n edges.
Original entry on oeis.org
1, 0, 1, 2, 3, 4, 15, 32, 89, 266, 797, 2496, 8012, 26028, 85888, 286608, 965216, 3278776, 11221548, 38665192, 134050521, 467382224, 1638080277, 5768886048, 20407622631, 72494277840, 258527335373, 925322077852, 3323258053528, 11973883092034, 43273374700200, 156836969693756, 569967330200576, 2076647113454878, 7584534277720818, 27764845224462192, 101862027752012402, 374484866509396780, 1379489908513460150
Offset: 6
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A342057
Number of polyhedra with n faces and n vertices up to orientation preserving isomorphisms.
Original entry on oeis.org
1, 1, 3, 11, 69, 541, 5096, 50586, 534292, 5865150, 66582243, 776705379, 9274453627, 112984297173
Offset: 4
Showing 1-6 of 6 results.
Comments