cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A342060 Triangle read by rows: T(n,k) is the number of embeddings on the sphere of 2-connected planar graphs with n nodes and k faces, n >= 3, k=2..2*n-4.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 2, 1, 1, 3, 13, 21, 16, 5, 2, 1, 4, 29, 94, 183, 154, 76, 18, 5, 1, 6, 59, 328, 1146, 2114, 2144, 1246, 447, 88, 14, 1, 7, 104, 915, 5046, 16009, 30183, 33719, 23749, 10585, 3017, 489, 50, 1, 9, 181, 2239, 17876, 85550, 254831, 478913, 581324, 468388, 255156, 93028, 22077, 3071, 233
Offset: 3

Views

Author

Andrew Howroyd, Mar 27 2021

Keywords

Comments

Equivalently, T(n,k) is the number of unsensed 2-connected planar maps with n vertices and k faces.
The number of edges is n+k-2.
Terms of this sequence can be computed using the tool "plantri". The expanded reference gives rows 3..15 of this table.

Examples

			Triangle begins:
  1;
  1, 1,  1;
  1, 2,  4,   2,    1;
  1, 3, 13,  21,   16,    5,    2;
  1, 4, 29,  94,  183,  154,   76,   18,   5;
  1, 6, 59, 328, 1146, 2114, 2144, 1246, 447, 88, 14;
  ...
		

Crossrefs

Row sums are A034889.
Cf. A006407 (by edges), A212438 (3-connected), A342059.

Formula

T(n,2) = 1.
T(n,3) = A253186(n-2).

A384964 Triangle read by rows: T(n,k) is the number of embeddings on the sphere of connected simple planar graphs with n nodes and k faces up to orientation preserving isomorphisms, n >= 1, k=1..max(1,2*n-4).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 3, 8, 8, 6, 2, 1, 6, 29, 60, 73, 52, 25, 6, 2, 14, 113, 388, 768, 903, 728, 379, 136, 26, 6, 34, 444, 2303, 6584, 11782, 14321, 12113, 7298, 3048, 872, 147, 17, 95, 1763, 12650, 49806, 123547, 210314, 255884, 228807, 150929, 73428, 25536, 6142, 892, 73
Offset: 1

Views

Author

Andrew Howroyd, Jun 13 2025

Keywords

Comments

Equivalently, T(n,k) is the number of sensed simple planar maps with n vertices and k faces.
The number of edges is n+k-2.
Terms of this sequence can be computed using the tool "plantri". The expanded reference gives rows 1..14 of this table.

Examples

			Triangle begins:
   1;
   1;
   1,   1,
   2,   2,    1,    1,
   3,   8,    8,    6,     2,     1,
   6,  29,   60,   73,    52,    25,     6,    2,
  14, 113,  388,  768,   903,   728,   379,  136,   26,   6,
  34, 444, 2303, 6584, 11782, 14321, 12113, 7298, 3048, 872, 147, 17;
  ...
		

Crossrefs

Row sums are A384965.
Antidiagonal sums are A006394.
Columns 1..2 are A002995, A384966.
Cf. A379430 (not necessarily simple), A342059 (2-connected), A239893 (3-connected), A384963 (unsensed).

A006406 Number of sensed 2-connected simple planar maps with n edges.

Original entry on oeis.org

1, 1, 2, 4, 9, 24, 81, 274, 1071, 4357, 18416, 80040, 356109, 1610910, 7399114
Offset: 3

Views

Author

Keywords

Comments

A simple planar map is a planar map without loops or parallel edges.
Equivalently, a(n) is the number of embeddings on the sphere of 2-connected planar graphs with n edges up to orientation preserving isomorphisms. - Andrew Howroyd, Mar 27 2021

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006402, A006404, A006407 (unsensed case), A342059, A379437 (rooted).

Formula

a(n) = Sum_{k=3..n} A342059(k, n+2-k). - Andrew Howroyd, Mar 27 2021

Extensions

a(11) and a(12) from Sean A. Irvine, Apr 02 2017
a(13)-a(17) from Andrew Howroyd, Mar 27 2021

A342061 Triangle read by rows: T(n,k) is the number of sensed 2-connected (nonseparable) planar maps with n edges and k vertices, n >= 2, 2 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 8, 3, 1, 1, 4, 16, 16, 4, 1, 1, 5, 38, 63, 38, 5, 1, 1, 7, 72, 218, 218, 72, 7, 1, 1, 8, 134, 622, 1075, 622, 134, 8, 1, 1, 10, 224, 1600, 4214, 4214, 1600, 224, 10, 1, 1, 12, 375, 3703, 14381, 22222, 14381, 3703, 375, 12, 1
Offset: 2

Views

Author

Andrew Howroyd, Mar 30 2021

Keywords

Comments

The number of faces is n + 2 - k.

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1,   1;
  1, 2,   2,   1;
  1, 3,   8,   3,    1;
  1, 4,  16,  16,    4,   1;
  1, 5,  38,  63,   38,   5,   1;
  1, 7,  72, 218,  218,  72,   7, 1;
  1, 8, 134, 622, 1075, 622, 134, 8, 1;
  ...
		

Crossrefs

Column k=3 is A001399(n-3).
Row sums are A006402.
Cf. A082680 (rooted), A239893, A342059.

Programs

  • PARI
    \\ See section 4 of Walsh reference.
    T(n)={
      my(B=matrix(n, n, i, j, if(i+j <= n+1, (2*i+j-2)!*(2*j+i-2)!/(i!*j!*(2*i-1)!*(2*j-1)!))));
      my(C(i,j)=((i+j-1)*(i+1)*(j+1)/(2*(2*i+j-1)*(2*j+i-1)))*B[(i+1)/2,(j+1)/2]);
      my(D(i,j)=((j+1)/2)*B[i/2, (j+1)/2]);
      my(E(i,j)=((i-1)*(j-1) + 2*(i+j)*(i+j-1))*B[i,j]);
      my(F(i,j)=if(!i, j==1, ((i+j)*(6*j+2*i-5)*j*(2*i+j-1)/(2*(2*i+1)*(2*j+i-2)))*B[i,j]) + if(j-1, binomial(i+2,2)*B[i+1,j-1]));
      vector(n, n, vector(n, i, my(j=n+1-i); B[i,j]
        + (i+j)*if(i%2, if(j%2, C(i,j), D(j,i)), if(j%2, D(i,j)))
        + sumdiv(i+j, d, if(d>1, eulerphi(d)*( if(i%d==0, E(i/d, j/d) ) + if(i%d==1, F((i-1)/d, (j+1)/d)) + if(j%d==1, F((j-1)/d, (i+1)/d)) )))
       )/(2*n+2));
    }
    { my(A=T(10)); for(n=1, #A, print(A[n])) }

Formula

T(n,k) = T(n, n+2-k).

A342058 Number of embeddings on the sphere of 2-connected planar graphs with n nodes up to orientation preserving isomorphisms.

Original entry on oeis.org

1, 3, 11, 82, 942, 14162, 242110, 4492455, 88181555, 1808322585, 38406536120, 839691224953, 18810933303213
Offset: 3

Views

Author

Andrew Howroyd, Mar 27 2021

Keywords

Comments

Number of sensed 2-connected planar maps with n vertices. Multiple edges and loops are not allowed.

Crossrefs

Row sums of A342059.
Cf. A034889 (unsensed case).
Showing 1-5 of 5 results.