cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A000944 Number of polyhedra (or 3-connected simple planar graphs) with n nodes.

Original entry on oeis.org

0, 0, 0, 1, 2, 7, 34, 257, 2606, 32300, 440564, 6384634, 96262938, 1496225352, 23833988129, 387591510244, 6415851530241, 107854282197058
Offset: 1

Views

Author

Keywords

References

  • H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, B15.
  • M. B. Dillencourt, Polyhedra of small orders and their Hamiltonian properties. Tech. Rep. 92-91, Info. and Comp. Sci. Dept., Univ. Calif. Irvine, 1992.
  • B. Grünbaum, Convex Polytopes. Wiley, NY, 1967, p. 424.
  • Y. Y. Prokhorov, ed., Mnogogrannik [Polyhedron], Mathematical Encyclopedia Dictionary, Soviet Encyclopedia, 1988.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • G. M. Ziegler, Questions about polytopes, pp. 1195-1211 of Mathematics Unlimited - 2001 and Beyond, ed. B. Engquist and W. Schmid, Springer-Verlag, 2001.

Crossrefs

Extensions

More terms from Brendan McKay
a(18) from Brendan McKay, Jun 02 2006

A049337 Triangle read by rows: T(n,k) is the number of 3-connected planar graphs (or polyhedra) with n >= 1 nodes and 0 <= k <= C(n,2) edges.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 8, 11, 8, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 11, 42, 74, 76, 38, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 74, 296, 633, 768, 558, 219, 50
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins
  0;
  0,0;
  0,0,0,0;
  0,0,0,1,0,0,0;
  0,0,0,0,0,1,1,0,0,0;
  0,0,0,0,0,0,1,2,2,...;
  ...
From _Hugo Pfoertner_, Nov 24 2020: (Start)
Transposed table:
.
                              Nodes                        Sums
       4  5  6   7   8    9    10     11     12    13  14 |A002840
  Edges-+--+--+---+---+----+-----+------+------+-----+---+|-------
   6 | 1  .  .   .   .    .     .      .      .     .   . |      1
   7 | .  .  .   .   .    .     .      .      .     .   . |      0
   8 | .  1  .   .   .    .     .      .      .     .   . |      1
   9 | .  1  1   .   .    .     .      .      .     .   . |      2
  10 | .  .  2   .   .    .     .      .      .     .   . |      2
  11 | .  .  2   2   .    .     .      .      .     .   . |      4
  12 | .  .  2   8   2    .     .      .      .     .   . |     12
  13 | .  .  .  11  11    .     .      .      .     .   . |     22
  14 | .  .  .   8  42    8     .      .      .     .   . |     58
  15 | .  .  .   5  74   74     5      .      .     .   . |    158
  16 | .  .  .   .  76  296    76      .      .     .   . |    448
  17 | .  .  .   .  38  633   633     38      .     .   . |   1342
  18 | .  .  .   .  14  768  2635    768     14     .   . |   4199
  19 | .  .  .   .   .  538  6134   6134    558     .   . |  13384
  20 | .  .  .   .   .  219  8822  25626   8822   219   . |  43708
  21 | .  .  .   .   .   50  7916  64439  64439  7916  50 | 144810
  .. | .  .  .   .   .    .    ..     ..     ..    ..  .. |     ..
     ---+--+--+---+---+----+-----+------+-------+----+---+
  Sums 1  2  7  34 257 2606 32300 440564 6384634 .. A000944
(End)
		

Crossrefs

A049337, A058787, A212438 are all versions of the same triangle.
Cf. A058788.

Extensions

Missing zeros inserted by Sean A. Irvine, Jul 29 2021

A342060 Triangle read by rows: T(n,k) is the number of embeddings on the sphere of 2-connected planar graphs with n nodes and k faces, n >= 3, k=2..2*n-4.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 2, 1, 1, 3, 13, 21, 16, 5, 2, 1, 4, 29, 94, 183, 154, 76, 18, 5, 1, 6, 59, 328, 1146, 2114, 2144, 1246, 447, 88, 14, 1, 7, 104, 915, 5046, 16009, 30183, 33719, 23749, 10585, 3017, 489, 50, 1, 9, 181, 2239, 17876, 85550, 254831, 478913, 581324, 468388, 255156, 93028, 22077, 3071, 233
Offset: 3

Views

Author

Andrew Howroyd, Mar 27 2021

Keywords

Comments

Equivalently, T(n,k) is the number of unsensed 2-connected planar maps with n vertices and k faces.
The number of edges is n+k-2.
Terms of this sequence can be computed using the tool "plantri". The expanded reference gives rows 3..15 of this table.

Examples

			Triangle begins:
  1;
  1, 1,  1;
  1, 2,  4,   2,    1;
  1, 3, 13,  21,   16,    5,    2;
  1, 4, 29,  94,  183,  154,   76,   18,   5;
  1, 6, 59, 328, 1146, 2114, 2144, 1246, 447, 88, 14;
  ...
		

Crossrefs

Row sums are A034889.
Cf. A006407 (by edges), A212438 (3-connected), A342059.

Formula

T(n,2) = 1.
T(n,3) = A253186(n-2).

A239893 Irregular triangle read by rows: T(n,k) is the number of sensed 3-connected planar maps with n >= 4 faces and k >= 4 vertices.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 3, 2, 2, 0, 0, 2, 11, 16, 10, 6, 0, 0, 2, 16, 69, 127, 128, 60, 17, 0, 0, 0, 10, 127, 541, 1188, 1441, 1032, 386, 73, 0, 0, 0, 6, 128, 1188, 5096, 11982, 17265, 15466, 8582, 2652, 389, 0, 0, 0, 0, 60, 1441, 11982, 50586, 127765, 206880, 222472, 158057, 71980, 18914, 2274
Offset: 4

Views

Author

N. J. A. Sloane, Apr 03 2014

Keywords

Comments

T(n,k) is the number of polyhedra with n faces and k vertices up to orientation preserving isomorphisms. The number of edges is n+k-2. - Andrew Howroyd, Mar 27 2021

Examples

			Triangle begins:
1
0 1 1
0 1 3  2   2
0 0 2 11  16   10     6
0 0 2 16  69  127   128    60     17
0 0 0 10 127  541  1188  1441   1032    386     73
0 0 0  6 128 1188  5096 11982  17265  15466   8582   2652   389
0 0 0  0  60 1441 11982 50586 127765 206880 222472 158057 71980 18914 2274
...
		

Crossrefs

Row and column sums are A119501.
Main diagonal is A342057.
The unsensed version is A212438.
Cf. A005645 (by edges).

Formula

T(n,k) = T(k,n). - Andrew Howroyd, Mar 27 2021

Extensions

Terms a(67) and beyond from Andrew Howroyd, Mar 27 2021

A384963 Triangle read by rows: T(n,k) is the number of embeddings on the sphere of connected simple planar graphs with n nodes and k faces, n >= 1, k=1..max(1,2*n-4).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 3, 7, 7, 5, 2, 1, 6, 22, 42, 49, 35, 18, 5, 2, 12, 76, 237, 442, 510, 412, 218, 84, 18, 5, 27, 271, 1293, 3539, 6205, 7482, 6318, 3833, 1623, 485, 88, 14, 65, 1001, 6757, 25842, 63254, 106985, 129782, 115988, 76582, 37421, 13111, 3228, 489, 50
Offset: 1

Views

Author

Andrew Howroyd, Jun 13 2025

Keywords

Comments

Equivalently, T(n,k) is the number of unsensed simple planar maps with n vertices and k faces.
The number of edges is n+k-2.
Terms of this sequence can be computed using the tool "plantri". The expanded reference gives rows 1..14 of this table.

Examples

			Triangle begins:
   1;
   1;
   1,   1;
   2,   2,    1,    1,
   3,   7,    7,    5,    2,    1;
   6,  22,   42,   49,   35,   18,    5,    2;
  12,  76,  237,  442,  510,  412,  218,   84,   18,   5;
  27, 271, 1293, 3539, 6205, 7482, 6318, 3833, 1623, 485, 88, 14;
  ...
		

Crossrefs

Row sums are A372892.
Antidiagonal sums are A006395.
Columns 1..2 are A006082, A384967.
Cf. A277741 (not necessarily simple), A342060 (2-connected), A212438 (3-connected), A384850 (version by number of edges then vertices), A384964 (sensed version).

A002856 Number of polyhedra with n nodes and n faces.

Original entry on oeis.org

1, 1, 2, 8, 42, 296, 2635, 25626, 268394, 2937495, 33310550, 388431688, 4637550072, 56493493990, 700335433295
Offset: 4

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

One of the main diagonals of A212438.

Extensions

More terms from Gerard P. Michon, Mar 29 2002

A058787 Triangle T(n,k) = number of polyhedra (triconnected planar graphs) with n faces and k vertices, where (n/2+2) <= k <= (2n+8).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 8, 11, 8, 5, 2, 11, 42, 74, 76, 38, 14, 8, 74, 296, 633, 768, 558, 219, 50, 5, 76, 633, 2635, 6134, 8822, 7916, 4442, 1404, 233, 38, 768, 6134, 25626, 64439, 104213, 112082, 79773, 36528, 9714, 1249, 14, 558, 8822, 64439, 268394, 709302
Offset: 4

Views

Author

Gerard P. Michon, Nov 29 2000

Keywords

Comments

Rows are of lengths 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, ... floor(3n/2)-5. See A001651 (this is the sequence of integers not divisible by 3).

Examples

			There are 38 polyhedra with 9 faces and 11 vertices, or with 11 faces and 9 vertices.
		

Crossrefs

A049337, A058787, A212438 are all versions of the same triangle.

A378075 Triangle read by rows: T(n,k) is the number of embeddings on the sphere of 2-connected homeomorphically irreducible planar graphs with n nodes and k faces, k=4..2n-4.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 3, 3, 2, 0, 0, 3, 11, 18, 10, 5, 0, 0, 3, 19, 77, 134, 123, 50, 14, 0, 0, 0, 13, 146, 603, 1280, 1420, 883, 278, 50, 0, 0, 0, 8, 162, 1409, 6030, 13781, 18404, 14570, 6884, 1772, 233, 0, 0, 0, 0, 83, 1809, 15225, 64502, 158717, 240841, 233286, 144005, 55444, 12077, 1249
Offset: 4

Views

Author

Andrew Howroyd, Nov 15 2024

Keywords

Comments

The number of edges is n + k - 2.

Examples

			Triangle begins:
  n\k| 4  5  6   7    8     9    10     11     12     13    14    15   16
-----+--------------------------------------------------------------------
   4 | 1;
   5 | 0, 1, 1;
   6 | 0, 1, 3,  3,   2;
   7 | 0, 0, 3, 11,  18,   10,    5;
   8 | 0, 0, 3, 19,  77,  134,  123,    50,    14;
   9 | 0, 0, 0, 13, 146,  603, 1280,  1420,   883,   278,   50;
  10 | 0, 0, 0,  8, 162, 1409, 6030, 13781, 18404, 14570, 6884, 1772, 233;
  ...
		

Crossrefs

Row sums are A378074.
Antidiagonal sums give A378076.

Formula

T(n,k) = A212438(n,k) + A378077(n,k).

A384850 Triangle read by rows: T(n,k) is the number of unsensed simple planar maps with n edges and k vertices, 1 <= k <= n+1.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 2, 3, 0, 0, 0, 1, 7, 6, 0, 0, 0, 1, 7, 22, 12, 0, 0, 0, 0, 5, 42, 76, 27, 0, 0, 0, 0, 2, 49, 237, 271, 65, 0, 0, 0, 0, 1, 35, 442, 1293, 1001, 175, 0, 0, 0, 0, 0, 18, 510, 3539, 6757, 3765, 490
Offset: 0

Views

Author

Andrew Howroyd, Jun 13 2025

Keywords

Comments

The planar maps considered here are connected.
The initial terms of this sequence can be computed using the tool "plantri", in particular the command "./plantri -u -v -c1 -p [n]" will compute values for a column.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0, 1;
  0, 0, 1, 2;
  0, 0, 0, 2, 3;
  0, 0, 0, 1, 7,  6;
  0, 0, 0, 1, 7, 22,  12;
  0, 0, 0, 0, 5, 42,  76,   27;
  0, 0, 0, 0, 2, 49, 237,  271,   65;
  0, 0, 0, 0, 1, 35, 442, 1293, 1001, 175;
  ...
		

Crossrefs

Row sums are A006395.
Column sums are A372892.
Main diagonal is A006082.
Subdiagonal is A384967.
Cf. A054923 (graphs), A277741 (not necessarily simple), A342060 (2-connected), A212438 (3-connected), A384963 (version by number of vertices then faces).

A378077 Triangle read by rows: T(n,k) is the number of embeddings on the sphere of planar graphs with n vertices and k faces having connectivity exactly 2 and minimum vertex degree at least 3, k=6..2n-5.

Original entry on oeis.org

1, 1, 1, 3, 7, 2, 1, 8, 35, 60, 47, 12, 0, 5, 72, 307, 647, 652, 325, 59, 0, 3, 86, 776, 3395, 7647, 9582, 6654, 2442, 368, 0, 0, 45, 1041, 9091, 38876, 94278, 136628, 121204, 64232, 18916, 2363, 0, 0, 18, 827, 14407, 111076, 468211, 1192511, 1937266, 2049784, 1409199, 607746, 150161, 16253
Offset: 6

Views

Author

Andrew Howroyd, Nov 15 2024

Keywords

Comments

The graphs are 2-connected, but not 3-connected. Graphs with minimum degree at least 3 are also called homeomorphically irreducible.
The number of edges is n + k - 2.

Examples

			Triangle begins:
  n\k| 6  7   8     9    10     11     12      13      14     15     16    17
-----+------------------------------------------------------------------------
   6 | 1, 1;
   7 | 1, 3,  7,    2;
   8 | 1, 8, 35,   60,   47,    12;
   9 | 0, 5, 72,  307,  647,   652,   325,     59;
  10 | 0, 3, 86,  776, 3395,  7647,  9582,   6654,   2442,   368;
  11 | 0, 0, 45, 1041, 9091, 38876, 94278, 136628, 121204, 64232, 18916, 2363;
  ...
		

Crossrefs

Rows sums are A187927.
Antidiagonals sums give A187928.
Cf. A378075.

Formula

T(n,k) = A212438(n,k) - A378075(n,k).
Showing 1-10 of 11 results. Next