A239977 a(n) = -Sum_{k=0..n} binomial(n, k)*A226158(k).
0, 1, 3, 6, 9, 10, 9, 14, 33, 18, -135, 22, 2097, 26, -38199, 30, 929601, 34, -28820583, 38, 1109652945, 42, -51943281687, 46, 2905151042529, 50, -191329672483911, 54, 14655626154768753, 58, -1291885088448017655, 62, 129848163681107302017, 66
Offset: 0
Links
- B. Sury, The value of Bernoulli Polynomials at rational numbers, Bull. London Math. Soc. 25 (1993), 327-29.
Crossrefs
Cf. A083007.
Programs
-
Magma
[0,1] cat [2*((1 - 2^n)*Bernoulli(n) + n): n in [2..40]]; // Vincenzo Librandi, Mar 03 2015
-
Maple
A239977 := n -> 2*((1-2^n)*bernoulli(n,1) + n): seq(A239977(n), n=0..33); # Peter Luschny, Mar 08 2015
-
Mathematica
a[n_] := (EulerE[n-1, 0]+2)*n; a[0] = 0; a[1] = 1; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 02 2014 *)
Formula
a(n) = 2*n + A226158(n).
a(2n) is divisible by 3.
a(2n+1) = A133653(n).
a(n) = 2*((1 - 2^n)*B(n, 1) + n), B(n, x) the Bernoulli polynomial. - Peter Luschny, Apr 16 2014
From Peter Bala, Mar 02 2015: (Start)
a(n) = (-2)^n * ( B(n,-1/2) - B(n,0) ), where B(n,x) denotes the n-th Bernoulli polynomial. More generally, for any nonzero integer k, k^n*( B(n,1/k) - B(n,0) ) is an integer for n >= 0. Cf. A083007.
a(0) = 0 and for n >= 1, a(n) = 1 - 1/(n + 1)*Sum_{k = 1..n-1} (-2)^(n-k)*binomial(n+1,k)*a(k).
E.g.f.: 2*x*exp(2*x)/(1 + exp(x)) = x + 3*x^2/2! + 6*x^3/3! + .... (End)
a(n) = Sum_{k=0..n-1} 2^k*binomial(n, k)*Bernoulli(k, 1). - Peter Luschny, Aug 17 2021
Comments