A240137 Sum of n consecutive cubes starting from n^3.
0, 1, 35, 216, 748, 1925, 4131, 7840, 13616, 22113, 34075, 50336, 71820, 99541, 134603, 178200, 231616, 296225, 373491, 464968, 572300, 697221, 841555, 1007216, 1196208, 1410625, 1652651, 1924560, 2228716, 2567573, 2943675, 3359656, 3818240, 4322241, 4874563
Offset: 0
Examples
a(3) = 216 because 216 = 3^3 + 4^3 + 5^3.
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Bruno Berselli, Formula for the constant 1.035656885842088312...
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Magma
[n^2*(3*n-1)*(5*n-3)/4: n in [0..40]];
-
Maple
A240137:=n->n^2*(3*n-1)*(5*n-3)/4; seq(A240137(n), n=0..40); # Wesley Ivan Hurt, May 09 2014
-
Mathematica
Table[n^2 (3 n - 1) (5 n - 3)/4, {n, 0, 40}] CoefficientList[Series[x (1 + 30 x + 51 x^2 + 8 x^3)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 09 2014 *)
-
PARI
a(n)=n^2*(3*n-1)*(5*n-3)/4 \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[n^2*(3*n-1)*(5*n-3)/4 for n in [0..40]]
Formula
G.f.: x*(1 + 30*x + 51*x^2 + 8*x^3)/(1 - x)^5.
a(n) = Sum_{j=n..2n-1} j^3. - Jon E. Schoenfield, Mar 13 2022
Comments