A240172 O.g.f.: Sum_{n>=0} n! * x^n * (1+x)^n.
1, 1, 3, 10, 44, 234, 1470, 10656, 87624, 806280, 8211000, 91707120, 1114793280, 14653936080, 207138844080, 3133376225280, 50508380361600, 864341342363520, 15650522186302080, 298948657681094400, 6007868689030387200, 126719410500228268800, 2799004485444175008000, 64613640777996615782400
Offset: 0
Keywords
Examples
O.g.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 44*x^4 + 234*x^5 + 1470*x^6 +... where A(x) = 1 + x*(1+x) + 2!*x^2*(1+x)^2 + 3!*x^3*(1+x)^3 + 4!*x^4*(1+x)^4 +... Also, we have the identity: A(x) = 1 + x*(1+x)/(1+x+x^2)^2 + 2^2*x^2*(1+x)^2/(1+2*x+2*x^2)^3 + 3^3*x^3*(1+x)^3/(1+3*x+3*x^2)^4 + 4^4*x^4*(1+x)^4/(1+4*x+4*x^2)^5 +...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450
Crossrefs
Column k=2 of A276890.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<3, n^2-n+1, (n-2)*a(n-1)+(2*n-1)*a(n-2)+(n-1)*a(n-3)) end: seq(a(n), n=0..25); # Alois P. Heinz, Sep 21 2016
-
Mathematica
Table[Sum[Binomial[n-k, k] * (n-k)!,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 02 2014 *)
-
PARI
{a(n)=local(A=1);A=sum(m=0, n, m^m*x^m*(1+x)^m/(1 + m*x + m*x^2 +x*O(x^n))^(m+1));polcoeff(A, n)} for(n=0,30,print1(a(n),", "))
-
PARI
{a(n)=sum(k=0, n\2, binomial(n-k,k) * (n-k)! )} for(n=0,30,print1(a(n),", "))
Formula
O.g.f.: Sum_{n>=0} n^n * x^n * (1+x)^n / (1 + n*x + n*x^2)^(n+1).
a(n) = Sum_{k=0..[n/2]} binomial(n-k, k) * (n-k)!.
a(n) ~ exp(1) * n!. - Vaclav Kotesovec, Aug 02 2014
Comments