A276890
Number A(n,k) of ordered set partitions of [n] such that for each block b the smallest integer interval containing b has at most k elements; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 3, 6, 0, 1, 1, 3, 10, 24, 0, 1, 1, 3, 13, 44, 120, 0, 1, 1, 3, 13, 62, 234, 720, 0, 1, 1, 3, 13, 75, 352, 1470, 5040, 0, 1, 1, 3, 13, 75, 466, 2348, 10656, 40320, 0, 1, 1, 3, 13, 75, 541, 3272, 17880, 87624, 362880, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 3, 3, 3, 3, 3, 3, ...
0, 6, 10, 13, 13, 13, 13, 13, ...
0, 24, 44, 62, 75, 75, 75, 75, ...
0, 120, 234, 352, 466, 541, 541, 541, ...
0, 720, 1470, 2348, 3272, 4142, 4683, 4683, ...
0, 5040, 10656, 17880, 26032, 34792, 42610, 47293, ...
Columns k=0-10:
A000007,
A000142,
A240172,
A276893,
A276894,
A276895,
A276896,
A276897,
A276898,
A276899,
A276900.
-
b:= proc(n, m, l) option remember; `if`(n=0, m!,
add(b(n-1, max(m, j), [subsop(1=NULL, l)[],
`if`(j<=m, 0, j)]), j={l[], m+1} minus {0}))
end:
A:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0),
`if`(k=1, n!, b(n, 0, [0$(k-1)]))):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[n_, m_, l_List] := b[n, m, l] = If[n == 0, m!, Sum[b[n - 1, Max[m, j], Append[ReplacePart[l, 1 -> Nothing], If[j <= m, 0, j]]], {j, Append[l, m + 1] ~Complement~ {0}}]]; A[n_, k_] := If[k==0, If[n==0, 1, 0], If[k==1, n!, b[n, 0, Array[0&, k-1]]]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 06 2017, after Alois P. Heinz *)
A240921
G.f.: Sum_{n>=0} n^n * x^n * (1 + n*x)^n / (1 + n*x + n^2*x^2)^(n+1).
Original entry on oeis.org
1, 1, 3, 18, 146, 1530, 19620, 297360, 5201784, 103146120, 2286181800, 56011087440, 1503057473280, 43844234353920, 1381310964633600, 46743301840435200, 1690919874777893760, 65116170597269151360, 2659604669692822051200, 114838104572526535200000, 5226654647185285702752000
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 146*x^4 + 1530*x^5 + 19620*x^6 +...
where
A(x) = 1 + x*(1+x)/(1+x+x^2)^2 + 2^2*x^2*(1+2*x)^2/(1+2*x+4*x^2)^3 + 3^3*x^3*(1+3*x)^3/(1+3*x+9*x^2)^4 + 4^4*x^4*(1+4*x)^4/(1+4*x+16*x^2)^5 +...
-
Table[Sum[(n-k)! * StirlingS2[n, n-k] * Binomial[n-k,k],{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Aug 03 2014 *)
-
/* From definition: */
{a(n)=local(A=1); A=sum(m=0, n, m^m*x^m*(1+m*x)^m/(1 + m*x + m^2*x^2 +x*O(x^n))^(m+1)); polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
-
/* From formula for a(n): */
{Stirling2(n, k)=sum(i=0, k, (-1)^i*binomial(k, i)*i^n)*(-1)^k/k!}
{a(n)=sum(k=0,n\2, (n-k)!*Stirling2(n, n-k)*binomial(n-k,k))}
for(n=0,30,print1(a(n),", "))
A370510
Expansion of Sum_{k>=0} k! * ( x * (1+x^3) )^k.
Original entry on oeis.org
1, 1, 2, 6, 25, 124, 738, 5136, 40922, 367218, 3664224, 40240560, 482278326, 6263414736, 87618506160, 1313435465280, 21003904630824, 356910121855320, 6422020465846320, 121980351190294800, 2438956634267865720, 51206322309647263200, 1126314497201852150640
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x*(1+x^3))^k))
-
a(n) = sum(k=0, n\4, (n-3*k)!*binomial(n-3*k, k));
A370509
Expansion of Sum_{k>=0} k! * ( x * (1+x^2) )^k.
Original entry on oeis.org
1, 1, 2, 7, 28, 138, 818, 5658, 44784, 399366, 3962256, 43289760, 516432984, 6679346280, 93091875120, 1390851720840, 22175338353120, 375794883339120, 6745177713093840, 127830886641354960, 2550687440585679360, 53451172032327664560, 1173650135526055272960
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x*(1+x^2))^k))
-
a(n) = sum(k=0, n\3, (n-2*k)!*binomial(n-2*k, k));
A346550
Expansion of Sum_{k>=0} k! * x^k * (1 + x)^(k+1).
Original entry on oeis.org
1, 2, 4, 13, 54, 278, 1704, 12126, 98280, 893904, 9017280, 99918120, 1206500400, 15768729360, 221792780160, 3340515069360, 53641756586880, 914849722725120, 16514863528665600, 314599179867396480, 6306817346711481600, 132727279189258656000
Offset: 0
-
a[n_] := Sum[k! * Binomial[k + 1, n - k], {k, Floor[n/2], n}]; Array[a, 22, 0] (* Amiram Eldar, Nov 30 2021 *)
-
a(n) = sum(k=n\2, n, k!*binomial(k+1, n-k));
-
a(n) = if(n<3, 2^n, (n-2)*a(n-1)+2*(n-1)*a(n-2)+(n-2)*a(n-3));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, k!*x^k*(1+x)^(k+1)))
A370668
Expansion of Sum_{k>0} k! * ( x * (1+x^k) )^k.
Original entry on oeis.org
1, 3, 6, 28, 120, 740, 5040, 40416, 362898, 3629400, 39916800, 479006070, 6227020800, 87178326480, 1307674369200, 20922790210656, 355687428096000, 6402373709004720, 121645100408832000, 2432902008212929224, 51090942171709545840, 1124000727778046764800
Offset: 1
-
my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, k!*(x*(1+x^k))^k))
-
a(n) = sumdiv(n,d, d!*binomial(d, n/d-1));
Showing 1-6 of 6 results.
Comments