A240440 Number of ways to place 3 points on a triangular grid of side n so that they are not vertices of an equilateral triangle of any orientation.
0, 0, 15, 105, 420, 1260, 3150, 6930, 13860, 25740, 45045, 75075, 120120, 185640, 278460, 406980, 581400, 813960, 1119195, 1514205, 2018940, 2656500, 3453450, 4440150, 5651100, 7125300, 8906625, 11044215, 13592880, 16613520, 20173560, 24347400, 29216880
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Steve Butler and Pavel Karasik, A note on nested sums, J. Int. Seq. (2010) Vol. 13, Issue 4, Art. No. 10.4.4. See p=5 in the last equation on page 3.
- Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 9.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
Programs
-
Magma
[(n+3)*(n+2)*(n+1)*n*(n-1)*(n-2)/48 : n in [1..50]]; // Wesley Ivan Hurt, Dec 03 2015
-
Maple
A240440:=n->(n+3)*(n+2)*(n+1)*n*(n-1)*(n-2)/48; seq(A240440(n), n=1..50); # Wesley Ivan Hurt, Apr 08 2014
-
Mathematica
Table[(n+3)(n+2)(n+1)n(n-1)(n-2)/48, {n, 50}] (* Wesley Ivan Hurt, Apr 08 2014 *) CoefficientList[Series[15 x^2/(1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 19 2014 *)
-
PARI
Vec(15*x^3/(1-x)^7 + O(x^100)) \\ Colin Barker, Apr 18 2014
-
PARI
vector(100,n,(n^2-1)*(n^2-4)*(n+3)*n/48) \\ Derek Orr, Dec 24 2015
Formula
a(n) = (n+3)*(n+2)*(n+1)*n*(n-1)*(n-2)/48.
G.f.: 15*x^3 / (1-x)^7. - Colin Barker, Apr 18 2014
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7) for n>7. - Wesley Ivan Hurt, Dec 03 2015
Comments