cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A336510 a(n) = Sum_{p | A055204(n)} 2^(pi(p) - 1).

Original entry on oeis.org

0, 1, 3, 3, 7, 4, 12, 13, 13, 8, 24, 26, 58, 51, 53, 53, 117, 116, 244, 240, 250, 235, 491, 488, 488, 457, 459, 451, 963, 964, 1988, 1989, 2007, 1942, 1946, 1946, 3994, 3867, 3897, 3900, 7996, 7991, 16183, 16167, 16163, 15906, 32290, 32288, 32288, 32289, 32355
Offset: 1

Views

Author

Michael De Vlieger, Sep 18 2020

Keywords

Comments

All terms of A055204 are squarefree by definition, therefore we can compress the terms of A055204 by interpreting the terms of reverse(A067255(A055204(n))) as a binary number and converted to decimal.

Examples

			A055204(1) = 1, the empty product; by convention a(1) = 0.
5! = 120 = 2^3 * 3 * 5, therefore 2 * 3 * 5 = 30 is the squarefree part, which we write "111", a 1 in the first three places to signify a product of the first three primes. Interpreting "111" as a binary number yields 8. Thus a(5) = 8.
13! = 6227020800 = 2^10 * 3^5 * 5^2 * 7 * 11 * 13; its squarefree part is 3 * 7 * 11 * 13 = 3003, a product of the 2nd, 4th, 5th, and 6th primes. Therefore we write "111010", which, interpreted as a binary number and converted to decimal, is 58. Thus a(13) = 58.
Table illustrating the first terms of this sequence, with b(n) = A055204(n):
               Multiplicities of p|b(n)
   n      b(n)   2  3  5  7 11 13 17 -> Binary   a(n)
  --------------------------------------------------
   1        1    .  .  .  .  .  .  .         0     0
   2        2    1  .  .  .  .  .  .         1     1
   3        6    1  1  .  .  .  .  .        11     3
   4        6    1  1  .  .  .  .  .        11     3
   5       30    1  1  1  .  .  .  .       111     7
   6        5    .  .  1  .  .  .  .       100     4
   7       35    .  .  1  1  .  .  .      1100    12
   8       70    1  .  1  1  .  .  .      1101    13
   9       70    1  .  1  1  .  .  .      1101    13
  10        7    .  .  .  1  .  .  .      1000     8
  11       77    .  .  .  1  1  .  .     11000    24
  12      231    .  1  .  1  1  .  .     11010    26
  13     3003    .  1  .  1  1  1  .    111010    58
  14      858    1  1  .  .  1  1  .    110011    51
  15     1430    1  .  1  .  1  1  .    110101    53
  16     1430    1  .  1  .  1  1  .    110101    53
  17    24310    1  .  1  .  1  1  1   1110101   117
  18    12155    .  .  1  .  1  1  1   1110100   116
  ...
		

Crossrefs

Programs

  • Mathematica
    Block[{nn = 51, k, p}, k = PrimePi@ nn; Array[Set[p[Prime@ #], 0] &, k]; {0}~Join~Reap[Do[Map[Set[p[#1], Mod[p[#1] + Mod[#2, 2], 2]] & @@ # &, FactorInteger@ i]; Sow[FromDigits[Array[p[Prime[k - # + 1]] &, k], 2]], {i, 2, nn}]][[-1, 1]]] (* or *)
    Block[{nn = 51, k = 1}, Reap[Do[Map[If[Mod[k, #] == 0, k /= #, k *= #] &, Flatten[ConstantArray[#1, #2] & @@@ FactorInteger@ i]]; Sow[If[k == 1, 0, Total@ Map[2^(PrimePi[#] - 1) &, FactorInteger[k][[All, 1]] ] ] ], {i, nn}]][[-1, 1]]]

A240505 Products of primes the squares of which are Fermi-Dirac divisors of n!

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 6, 2, 5, 5, 10, 10, 70, 210, 210, 210, 35, 35, 14, 14, 154, 154, 462, 2310, 30030, 10010, 715, 715, 4290, 4290, 4290, 4290, 36465, 7293, 4862, 4862, 92378, 277134, 277134, 277134, 1939938, 1939938, 88179, 146965, 6760390, 6760390, 20281170
Offset: 1

Views

Author

Vladimir Shevelev, Apr 06 2014

Keywords

Comments

Or equivalently, products of primes the squares of which are infinitary divisors of n!.

Crossrefs

Programs

  • PARI
    isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k,2]); bde = binary(valuation(d, f[k,1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)););); return (1);}
    a(n) = {f = factor(n!); for (k=1, #f~, if ((f[k,2] > 1) && isidiv(f[k,1]^2, f), f[k,2]=1, f[k,2]=0);); factorback(f);} \\ Michel Marcus, Feb 15 2016

Extensions

a(23)-a(32) from Michel Marcus, Feb 15 2016
a(1) = 1 and more terms from Rémy Sigrist, Feb 13 2019
Showing 1-2 of 2 results.