cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240530 a(n) = 4*(2*n)! / (n!)^2.

Original entry on oeis.org

4, 8, 24, 80, 280, 1008, 3696, 13728, 51480, 194480, 739024, 2821728, 10816624, 41602400, 160466400, 620470080, 2404321560, 9334424880, 36300541200, 141381055200, 551386115280, 2153031497760, 8416395854880, 32933722910400, 128990414732400
Offset: 0

Views

Author

Vincenzo Librandi, Apr 12 2014

Keywords

Comments

Apart from first term, the same as A146534. - Arkadiusz Wesolowski, Apr 12 2014

Crossrefs

Programs

  • GAP
    List([0..30], n-> 4*Binomial(2*n,n) ); # G. C. Greubel, Dec 19 2019
  • Magma
    [4*Binomial (2*n,n): n in [0..30]];
    
  • Maple
    seq( 4*binomial(2*n,n), n=0..30); # G. C. Greubel, Dec 19 2019
  • Mathematica
    Table[4*(2*n)!/(n!)^2, {n, 0, 40}] (* or *) CoefficientList[Series[4/Sqrt[1 - 4 x], {x, 0, 50}], x]
  • PARI
    vector(31, n, 4*binomial(2*n-2, n-1)) \\ G. C. Greubel, Dec 19 2019
    
  • Sage
    [4*binomial(2*n,n) for n in (0..30)] # G. C. Greubel, Dec 19 2019
    

Formula

G.f.: 4/sqrt(1-4*x).
a(n) = 4*binomial(2*n, n) = 4*A000984(n) = 2*A028329(n).
D-finite with recurrence: n*a(n) - 2*(2*n-1)*a(n-1) = 0 for n > 0.