A240530 a(n) = 4*(2*n)! / (n!)^2.
4, 8, 24, 80, 280, 1008, 3696, 13728, 51480, 194480, 739024, 2821728, 10816624, 41602400, 160466400, 620470080, 2404321560, 9334424880, 36300541200, 141381055200, 551386115280, 2153031497760, 8416395854880, 32933722910400, 128990414732400
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- M. Pedrazzi and G. Goldoni, Un labirinto cartesiano (A Cartesian Labyrinth), Archimede, Anno XXXVIII, Jan-Mar 1986, p. 41 (in Italian).
Programs
-
GAP
List([0..30], n-> 4*Binomial(2*n,n) ); # G. C. Greubel, Dec 19 2019
-
Magma
[4*Binomial (2*n,n): n in [0..30]];
-
Maple
seq( 4*binomial(2*n,n), n=0..30); # G. C. Greubel, Dec 19 2019
-
Mathematica
Table[4*(2*n)!/(n!)^2, {n, 0, 40}] (* or *) CoefficientList[Series[4/Sqrt[1 - 4 x], {x, 0, 50}], x]
-
PARI
vector(31, n, 4*binomial(2*n-2, n-1)) \\ G. C. Greubel, Dec 19 2019
-
Sage
[4*binomial(2*n,n) for n in (0..30)] # G. C. Greubel, Dec 19 2019
Comments