A240547 Number of non-congruent solutions of x^2 + y^2 + z^2 + t^2 == 0 mod n.
1, 8, 33, 32, 145, 264, 385, 128, 945, 1160, 1441, 1056, 2353, 3080, 4785, 512, 5185, 7560, 7201, 4640, 12705, 11528, 12673, 4224, 18625, 18824, 26001, 12320, 25201, 38280, 30721, 2048, 47553, 41480, 55825, 30240, 51985, 57608, 77649, 18560, 70561, 101640
Offset: 1
Examples
For n=2 the a(2)=8 solutions are (0,0,0,0), (1,1,0,0), (1,0,1,0), (1,0,0,1), (0,1,1,0), (0,1,0,1), (0,0,1,1), (1,1,1,1).
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
- László Tóth, Counting solutions of quadratic congruences in several variables revisited, arXiv preprint arXiv:1404.4214 [math.NT], 2014.
- László Tóth, Counting Solutions of Quadratic Congruences in Several Variables Revisited, J. Int. Seq. 17 (2014), Article 14.11.6.
- Index to sequences related to sums of squares.
Programs
-
Maple
A240547 := proc(n) local a, x, y, z, t ; a := 0 ; for x from 0 to n-1 do for y from 0 to n-1 do for z from 0 to n-1 do for t from 0 to n-1 do if (x^2+y^2+z^2+t^2) mod n = 0 mod n then a := a+1 ; fi; od; od ; od; od; a ; end proc; # alternative A240547 := proc(n) a := 1; for pe in ifactors(n)[2] do p := op(1,pe) ; e := op(2,pe) ; if p = 2 then a := a*p^(2*e+1) ; else a := a* p^(2*e-1)*(p^(e+1)+p^e-1) ; end if; end do: a ; end proc: seq(A240547(n),n=1..100) ; # R. J. Mathar, Jun 25 2018
-
Mathematica
b[2, e_] := 2^(2 e + 1); b[p_, e_] := p^(2 e - 1)*(p^(e + 1) + p^e - 1); a[n_] := Times @@ b @@@ FactorInteger[n]; Array[a, 42] (* Jean-François Alcover, Dec 05 2017 *)
-
PARI
a(n) = my(m); if( n<1, 0, forvec( v = vector(4, i, [0, n-1]), m += (0 == norml2(v)%n))); m /* Michael Somos, Apr 07 2014 */
-
PARI
a(n) = {my(f = factor(n), res = 1, start = 1, p, e, i); if(n % 2 == 0, res = 1<<(f[1,2]<<1+1); start = 2); for(i = start, #f~, p = f[i, 1]; e = f[i, 2]; res*=(p^(e<<1-1)*(p^(e+1)+p^e-1))); res} \\ David A. Corneth, Jul 22 2018
Formula
Multiplicative, with a(2^e) = 2^(2e+1) for e>=1, a(p^e) = p^(2e-1)*(p^(e+1)+p^e-1) for p > 2, e>=1.
Sum_{k=1..n} a(k) ~ c * n^4 + O(n^3 * log(n)), where c = 5*Pi^2/(168*zeta(3)) = 0.244362... (Tóth, 2014). - Amiram Eldar, Oct 18 2022